On the asymptotic behavior of eigenfunctions of the continuous spectrum at infinity in configuration space for the system of three three-dimensional like-charged quantum particles. (English. Russian original) Zbl 1380.81121

J. Math. Sci., New York 226, No. 6, 744-767 (2017); translation from Zap. Nauchn. Semin. POMI 451, 79-115 (2016).
Summary: To our knowledge there are no complete results, even not rigorously mathematically justified, related to a system of three and more quantum particles, interacting by Coulomb pair potentials, and expressed in terms of eigenfunctions. For the system of three such identical particles, asymptotic formulas describing the behavior of eigenfunctions at infinity in configuration space are suggested.


81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35J10 Schrödinger operator, Schrödinger equation
35P20 Asymptotic distributions of eigenvalues in context of PDEs
70F07 Three-body problems
Full Text: DOI


[1] V. S. Buslaev, S. P. Merkuriev, and S. P. Salikov, Problemy Mat. Fis., Leningr. University, Leningrad, 183, No. 9, 14-30 (1979).
[2] D. R. Yafaev, Mathematical Scattering Theory [in Russian], Izd. San.Peterb. Univ., St. Petersburg (1994).
[3] L. D. Faddeev, Mathematical Aspects of the Three-Body Problem of the Quantum Scattering Theory, Daniel Davey and Co., Inc., Jerusalem (1965).
[4] Buslaev, VS; Merkur’ev, SP; Salikov, SP, No article title, Zap. Nauchn. Semin. LOMI, 84, 16-22, (1979)
[5] Buslaev, VS; Kaliteevskij, NA, No article title, Teor. Mat. Fiz., 70, 266-277, (1987)
[6] Brauner, M; Briggs, JS; Klar, H, No article title, J. Phys. B, 22, 2265-2287, (1989)
[7] V. S. Buslaev and S. B. Levin, in: Selected Topics in Mathematical Physics, Amer. Math. Soc. Transl., (2) 225 (2008), pp. 55-71.
[8] Buslaev, VS; Levin, SB; Neittaannmäki, P; Ojala, T, No article title, J. Phys. A: Math. Theor., 43, 285205, (2010) · Zbl 1193.81111
[9] Buslaev, VS; Levin, SB, No article title, St. Petersburg Math. J., 22, 379-392, (2011) · Zbl 1219.81235
[10] Buslaev, VS; Levin, SB, No article title, Funct. Anal. Appl., 46, 147-151, (2012) · Zbl 1272.81185
[11] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, San Diego (1980).
[12] V. S. Buslaev, “Spectral theory and wave processes,” Problemy Mat. Fiz., Leningrad, 1, 82-101 (1966).
[13] Merkuriev, SP, No article title, Nuclear Physics, 24, 289, (1976)
[14] Merkuriev, SP, No article title, Teor. Mat. Fiz., 32, 187, (1977)
[15] L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems, Kluwer, Dordrecht (1993).
[16] Alt, EO; Mukhamedzhanov, AM, No article title, JETP Lett., 56, 436, (1992)
[17] E. O. Alt and A. M. Mukhamedzhanov, Phys. Rev. A, 47, 2004 (1993).
[18] Garibotti, G; Miraglia, JE, No article title, Phys. Rev. A, 21, 572, (1980)
[19] A. L. Godunov, Sh. D. Kunikeev, V. N. Mileev and V. S. Senashenko, in: Proceedings of the 13th International Conference on Physics of Electronic and Atomic Collisions (Berlin), ed. J.Eichler, Abstracts (1983), p. 380.
[20] H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1, MCGraw-Hill Book Company, Inc. New York-Toronto-London (1953).
[21] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, New York (1965).
[22] I. M. Gelfand and G. E. Shilov, Generalized Functions and Actions with Them [in Russian], Moscow (1959).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.