×

A level-set method for large-scale simulations of three-dimensional flows with moving contact lines. (English) Zbl 1380.76151

Summary: A new method is presented to perform three-dimensional simulations of two-phase flows with moving contact lines using level-set. To account for the full range of length scales involved in the physical problem under realistic conditions without having to resolve the flow down to the smallest continuum scale, a dynamic contact angle model based on asymptotic theory is used in conjunction with the computational method. Contact-angle hysteresis is also represented in this methodology. The method is validated against simulations wherein the flow is fully resolved over all length scales, and experiments of spreading droplets and droplets sliding down an inclined substrate.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76M12 Finite volume methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Afkhami, S.; Zaleski, S.; Bussmann, M., A mesh-dependent model for applying dynamic contact angles to VOF simulations, J. Comput. Phys., 228, 5370-5389 (2009) · Zbl 1280.76029
[2] Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E., Wetting and spreading, Rev. Mod. Phys., 81, 739-805 (2009)
[3] Butcher, J. C., Numerical methods for ordinary differential equations in the 20th century, J. Comput. Appl. Math., 125, 1-29 (2000) · Zbl 0969.65063
[4] Chen, Q.; Ramé, E.; Garoff, S., The breakdown of asymptotic hydrodynamic models of liquid spreading at increasing capillary number, Phys. Fluids, 7, 2631-2639 (1995)
[5] du Chéné, A.; Min, C.; Gibou, F., Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes, J. Sci. Comput., 35, 114-131 (2008) · Zbl 1203.65043
[6] Cox, R. G., The dynamics of the spreading of liquids on a solid surface part 1: viscous flow, J. Fluid Mech., 168, 169-194 (1986) · Zbl 0597.76102
[7] Cox, R. G., Inertial and viscous effects on dynamic contact angles, J. Fluid Mech., 357, 249-278 (1998) · Zbl 0908.76026
[8] Della Rocca, G.; Blanquart, G., Level set reinitialization at a contact line, J. Comput. Phys., 265, 34-49 (2014) · Zbl 1349.76599
[9] Ding, H.; Li, E. Q.; Zhang, F. H.; Sui, Y.; Spelt, P. D.M.; Thoroddsen, S. T., Propagation of capillary waves and ejection of small droplets in rapid droplet spreading, J. Fluid Mech., 697, 92-114 (2012) · Zbl 1250.76164
[10] Ding, H.; Spelt, P. D., Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations, J. Fluid Mech., 576, 287-296 (2007) · Zbl 1125.76024
[11] Dupont, J.-B.; Legendre, D., Numerical simulation of static and sliding drop with contact angle hysteresis, J. Comput. Phys., 229, 2453-2478 (2010) · Zbl 1430.76159
[12] Dussan V., E. B., On the spreading of liquids on solid surfaces: static and dynamic contact lines, Annu. Rev. Fluid Mech., 11, 371-400 (1979)
[13] Dussan, V. E.B.; Davis, S. H., On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech., 65, 71-95 (1974) · Zbl 0282.76004
[14] Dussan, V. E.B.; Ramé, E.; Garoff, S., On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation, J. Fluid Mech., 230, 97-116 (1991)
[15] Fang, C.; Hidrovo, C.; Wang, F.; Eaton, J.; Goodson, K., 3-D numerical simulation of contact angle hysteresis for microscale two phase flow, Int. J. Multiph. Flow, 34, 690-705 (2008)
[16] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[17] Hartmann, D.; Meinke, M.; Schröder, W., The constrained reinitialization equation for level set methods, J. Comput. Phys., 229, 1514-1535 (2010) · Zbl 1329.76259
[18] Hocking, L. M.; Rivers, A. D., The spreading of a drop by capillary action, J. Fluid Mech., 121, 425-442 (1982) · Zbl 0492.76101
[19] Huh, C.; Scriven, L., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35, 85-101 (1971)
[20] Jacqmin, D., Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57-88 (2000) · Zbl 0984.76084
[21] Jiang, G.-S.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 2126-2143 (2000) · Zbl 0957.35014
[22] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[23] Kafka, F. Y.; Dussan, V. E.B., On the interpretation of dynamic contact angles in capillaries, J. Fluid Mech., 95, 539-565 (1979) · Zbl 0415.76076
[24] Kang, M.; Fedkiw, R. P.; Liu, X.-D., A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput., 15, 323-360 (2000) · Zbl 1049.76046
[25] Karam, L.; McClellan, J.; Selesnick, E.; Burrus, C., Digital filtering, (Digital Signal Processing Handbook (1999), Springer International Publishing), 47-69
[26] Lavi, B.; Marmur, A., The exponential power law: partial wetting kinetics and dynamic contact angles, Colloids Surf. A, Physicochem. Eng. Asp., 250, 409-414 (2004)
[27] Le Grand, N.; Daerr, A.; Limat, L., Shape and motion of drops sliding down an inclined plane, J. Fluid Mech., 541, 293-315 (2005) · Zbl 1119.76305
[28] Liu, H.; Krishnan, S.; Marella, S.; Udaykumar, H., Sharp interface cartesian grid method II: a technique for simulating droplet interactions with surfaces of arbitrary shape, J. Comput. Phys., 210, 32-54 (2005) · Zbl 1154.76358
[29] Luo, J.; Hu, X.; Adams, N., Curvature boundary condition for a moving contact line, J. Comput. Phys., 310, 329-341 (2016) · Zbl 1349.76872
[30] Maglio, M.; Legendre, D., Numerical simulation of sliding drops on an inclined solid surface, (Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment (2014), Springer International Publishing), 47-69
[31] Marsh, J. A.; Garoff, S.; Dussan, V. E.B., Dynamic contact angles and hydrodynamics near a moving contact line, Phys. Rev. Lett., 70, 2778 (1993)
[32] Min, C.; Gibou, F., A second order accurate level set method on non-graded adaptive cartesian grids, J. Comput. Phys., 225, 300-321 (2007) · Zbl 1122.65077
[33] Moffatt, H. K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18, 1-18 (1964) · Zbl 0118.20501
[34] Muradoglu, M.; Tasoglu, S., A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls, Comput. Fluids, 39, 615-625 (2010) · Zbl 1242.76250
[35] Ngan, C. G.; Dussan, V. E.B., On the dynamics of liquid spreading on solid surfaces, J. Fluid Mech., 209, 191-226 (1989)
[36] Náraigh, L.Ó.; Valluri, P.; Scott, D. M.; Bethune, I.; Spelt, P. D.M., Linear instability, nonlinear instability and ligament dynamics in three-dimensional laminar two-layer liquid-liquid flows, J. Fluid Mech., 750, 464-506 (2014) · Zbl 1337.76027
[37] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, vol. 153 (2003), Springer Science & Business Media
[38] Podgorski, T.; Flesselles, J.-M.; Limat, L., Corners, cusps, and pearls in running drops, Phys. Rev. Lett., 87, Article 036102 pp. (2001)
[39] Ramé, E.; Garoff, S.; Willson, K. R., Characterizing the microscopic physics near moving contact lines using dynamic contact angle data, Phys. Rev. E, 70, Article 031608 pp. (2004)
[40] Russo, G.; Smereka, P., A remark on computing distance functions, J. Comput. Phys., 163, 51-67 (2000) · Zbl 0964.65089
[41] Shen, C.; Ruth, D. W., Experimental and numerical investigations of the interface profile close to a moving contact line, Phys. Fluids, 10, 789-799 (1998)
[42] Sheng, P.; Zhou, M., Immiscible-fluid displacement: contact-line dynamics and the velocity-dependent capillary pressure, Phys. Rev. A, 45, 5694-5708 (1992)
[43] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[44] Sibley, D. N.; Nold, A.; Kalliadasis, S., The asymptotics of the moving contact line: cracking an old nut, J. Fluid Mech., 764, 445-462 (2015) · Zbl 1335.76012
[45] Snoeijer, J. H.; Andreotti, B., Moving contact lines: scales, regimes, and dynamical transitions, Annu. Rev. Fluid Mech., 45, 269-292 (2013) · Zbl 1359.76320
[46] Snoeijer, J. H.; Rio, E.; Le Grand, N.; Limat, L., Self-similar flow and contact line geometry at the rear of cornered drops, Phys. Fluids, 17 (2005) · Zbl 1187.76496
[47] Solomenko, Z.; Spelt, P. D.M.; Ó Náraigh, L.; Alix, P., Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: a comparative study, Int. J. Multiph. Flow, 95, 235-256 (2017)
[48] Spelt, P. D.M., A level-set approach for simulations of flows with multiple moving contact lines with hysteresis, J. Comput. Phys., 207, 389-404 (2005) · Zbl 1213.76127
[49] Sui, Y.; Ding, H.; Spelt, P. D.M., Numerical simulations of flows with moving contact lines, Annu. Rev. Fluid Mech., 46, 97-119 (2014) · Zbl 1297.76177
[50] Sui, Y.; Spelt, P. D.M., An efficient computational model for macroscale simulations of moving contact lines, J. Comput. Phys., 242, 37-52 (2013) · Zbl 1311.76085
[51] Sui, Y.; Spelt, P. D.M., Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation, J. Fluid Mech., 715, 283-313 (2013) · Zbl 1284.76375
[52] Sui, Y.; Spelt, P. D.M., Non-isothermal droplet spreading/dewetting and its reversal, J. Fluid Mech., 776, 74-95 (2015) · Zbl 1382.76145
[53] Sussman, M.; Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H.; Welcome, M. L., An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148, 81-124 (1999) · Zbl 0930.76068
[54] Sussman, M.; Fatemi, E., An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput., 20, 1165-1191 (1999) · Zbl 0958.76070
[55] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[56] Tanguy, S.; Ménard, T.; Berlemont, A., A level set method for vaporizing two-phase flows, J. Comput. Phys., 221, 837-853 (2007) · Zbl 1216.76054
[57] Tryggvason, G.; Scardovelli, R.; Zaleski, S., Direct Numerical Simulations of Gas-Liquid Multiphase Flows (2011), Cambridge University Press · Zbl 1226.76001
[58] Xu, J.-J.; Ren, W., A level-set method for two-phase flows with moving contact line and insoluble surfactant, J. Comput. Phys., 263, 71-90 (2014) · Zbl 1349.76554
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.