×

zbMATH — the first resource for mathematics

Formulation of an unstructured grid model for global Ocean dynamics. (English) Zbl 1380.65275
Summary: A conservative discretization of the ocean primitive equations for global ocean dynamics is formulated on an unstructured grid. The grid consists of triangular cells with a C-type staggering of variables, where scalar variables are located at centers of grid cells and normal components of velocity are placed at cell boundaries. Reconstructions, necessitated by the staggering of variables, are chosen from a set of admissible reconstructions such that the discrete equations obey a weighted weak form, which guarantees discrete conservation properties. At the same time, a spurious mode, specific to the triangular C-grid, is controlled in a way that is compatible with conservation properties. The conservation properties of the discrete model are verified. Numerical simulations are presented, ranging from idealized geophysical flows to an ocean simulation at eddy-permitting resolution in order to substantiate the statement that global ocean dynamics can be formulated on triangular C-grids.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography
35Q86 PDEs in connection with geophysics
Software:
ICON; MPAS-Ocean
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adcroft, A. J.; Hill, C. N.; Marshall, J. C., A new treatment of the Coriolis terms in C-grid models at both high and low resolutions, Mon. Weather Rev., 127, 1928-1936, (1999)
[2] Bonaventura, L.; Ringler, T., Analysis of discrete shallow-water models on geodesic Delaunay grids with c-type staggering, Mon. Weather Rev., 133, 2351-2373, (2005)
[3] Brezzi, F.; Buffa, A.; Manzini, G., Mimetic scalar products of discrete differential forms, J. Comput. Phys., 257, 1228-1259, (2014) · Zbl 1352.65417
[4] Bryan, K., A numerical method for the study of the circulation of the world Ocean, J. Comput. Phys., 4, 347-376, (1969) · Zbl 0195.55504
[5] Bryden, H. L.; Beals, L. M.; Duncan, L. M., Structure and transport of the agulhas current and its temporal variability, J. Oceanogr., 61, 479-492, (2005)
[6] Casulli, V.; Zanoli, P., Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems, Math. Comput. Model., 36, 1131-1149, (2002) · Zbl 1027.76034
[7] Colella, P.; Woodward, P. R., The piecewise-parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201, (1984) · Zbl 0531.76082
[8] Cunningham, S. A.; Alderson, S. G.; King, B. A.; Brandon, M. A., Transport and variability of the antarctic circumpolar current in drake passage, J. Geophys. Res., 108, C5, (2003)
[9] Danilov, S.; Kivmann, G.; Schröder, J., A finite-element Ocean model: principles and evaluation, Ocean Model., 6, 125-150, (2004)
[10] Danilov, S., On utility of triangular C-grid type discretization for numerical modeling of large-scale Ocean flows, Ocean Dyn., 60, 1361-1369, (2010)
[11] Danilov, S., Ocean modeling on unstructured meshes, Ocean Model., 69, 195-210, (2013)
[12] Danilov, S., Two finite-volume unstructured mesh models for large-scale Ocean modeling, Ocean Model., 47, 14-25, (2012)
[13] Dukowicz, J. K.; Smith, R. D., Implicit free-surface method for the Bryan-Cox-semtner Ocean model, J. Geophys. Res., 99, 7991-8014, (1994)
[14] Fox-Kemper, B.; Menemenlis, D., Can large eddy simulation techniques improve mesoscale rich Ocean models?, (Hecht, M. W.; Hasumi, H., Ocean Modeling in an Eddying Regime, AGU Geophys. Monogr., vol. 177, (2008), Wiley)
[15] Gassmann, A., Inspection of hexagonal and triangular C-grid discretizations of the shallow water equations, J. Comput. Phys., 230, 2706-2721, (2011) · Zbl 1316.76069
[16] Gresho, P.; Chan, S., On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, part 2: implementation, Int. J. Numer. Methods Fluids, 11, 621-659, (1990) · Zbl 0712.76036
[17] Gill, A. E., Atmosphere-Ocean dynamics, Int. Geophys. Ser., vol. 30, (1982), Academic Press
[18] Gordon, A. L.; Sprintall, J.; Van Aken, H. M.; Susanto, D.; Wijffels, S.; Molcard, R.; Ffield, A.; Pranowo, W.; Wirasantosa, S., The Indonesian throughflow during 2004-2006 as observed by the INSTANT program, Dyn. Atmos. Ocean., 50, 115-128, (2010)
[19] Griffies, S. M.; Böning, C.; Bryan, F. O.; Chassignet, E. P.; Gerdes, R.; Hasumi, H.; Hirst, A.; Treguier, A.-M.; Webb, D., Developments in Ocean climate modelling, Ocean Model., 2, 123-192, (2000)
[20] Griffies, S., Fundamentals of Ocean climate models, (2004), Princeton University Press · Zbl 1065.86002
[21] Griffies, S. M.; Pacanowski, R. C.; Hallberg, R. W., Spurious diapycnal mixing associated with advection in a z-coordinate Ocean model, Mon. Weather Rev., 128, 538-564, (2000)
[22] Hansen, B.; Østerhus, S.; Turrell, W. R.; Jónsson, S.; Valdiarsson, H.; Hátún, H.; Olsen, S. M., The inflow of atlantic water, heat, and salt to the nordic seas across the greenland-Scotland ridge, (Dickson, R. R.; etal., Arctic-Subarctic Ocean Fluxes, (2008), Springer Dordrecht, Netherlands), 15-43
[23] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189, (1965) · Zbl 1180.76043
[24] Heikes, R.; Randall, D., Numerical integration of the shallow-water equations on a twisted icosahedral grid. part I: basic design and results of tests, Mon. Weather Rev., 123, 1862-1880, (1995)
[25] Hyman, J. M.; Shashkov, M., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Comput. Math. Appl., 33, 4, 81-104, (1997) · Zbl 0868.65006
[26] IPCC, Climate change 2013: the physical science basis, (Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M., Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (2013), Cambridge University Press Cambridge, United Kingdom, New York, NY, USA), 1535 pp
[27] (Jochum, M.; Murtugude, R., Physical Oceanography, (2006), Springer)
[28] Kanzow, T., Seasonal variability of the atlantic meridional overturning circulation at \(26.5^\circ\) N, J. Climate, 23, 5678-5698, (2010)
[29] Kleptsova, O.; Pietrzak, J. D.; Stelling, G. S., On the accurate and stable reconstruction of tangential velocities in C-grid Ocean models, Ocean Model., 28, 118-126, (2009)
[30] Korn, P.; Danilov, S., Elementary dispersion analysis of some mimetic discretizations on triangular C-grids, J. Comput. Phys., 330, 156-172, (2017) · Zbl 1380.65220
[31] P. Korn, L. Linardakis, A class of potential enstrophy and energy conserving discretizations of the shallow-water equations on unstructured grids (in preparation).
[32] Le Roux, D. Y.; Hanert, E.; Rostand, V.; Pouliot, B., Impact of mass lumping on gravity and Rossby waves in 2D finite-element shallow-water models, Int. J. Numer. Methods Fluids, 59, 767-790, (2009) · Zbl 1156.76035
[33] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, 1163-1227, (2014) · Zbl 1352.65420
[34] Marshall, J.; Hill, C.; Perelmann, L.; Adcroft, A., Hydrostatic, quasi-hydrostatic and nonhydrostatic Ocean modeling, J. Geophys. Res., 102, C3, 5733-5752, (1997)
[35] Marshall, J.; Adcroft, A.; Hill, C.; Perelmann, L.; Heisey, C., A finite-volume, incompressible Navier-Stokes model for studies of the Ocean on parallel computers, J. Geophys. Res., 102, C3, 5753-5766, (1997) · Zbl 0907.58089
[36] Marotzke, J., Influence of convective adjustment on the stability of the thermohaline circulation, J. Phys. Oceanogr., 21, 903-907, (1991)
[37] Maximenko, N.; Niiler, P.; Rio, M.-H.; Melnichenko, O.; Centurioni, L.; Chambers, D.; Zlotnicki, V.; Galperin, B., Mean dynamic topography of the Ocean derived from satellite and drifting buoy data using three different techniques, J. Atmos. Ocean. Technol., 26, 9, 1910-1919, (2009)
[38] Müller, P., The equations of oceanic motions, (2006), Cambridge University Press · Zbl 1134.76001
[39] Murray, R. J., Explicit generation of orthogonal grids for Ocean models, J. Comput. Phys., 126, 251-273, (1996) · Zbl 0858.76067
[40] Pacanowski, R. C.; Philander, S. G.H., Parameterization of vertical mixing in numerical models of tropical oceans, J. Phys. Oceanogr., 11, 1443-1451, (1981)
[41] Peixoto, P. S., Accuracy analysis of mimetic finite volume operators on geodesic grids and a consistent alternative, J. Comput. Phys., 310, 127-160, (2016) · Zbl 1349.76376
[42] Peixoto, P. S.; Barros, S. R.M., Analysis of grid imprinting on geodesic spherical icosahedral grids, J. Comput. Phys., 237, 61-78, (2013) · Zbl 1286.65118
[43] Peixoto, P. S.; Barros, S. R.M., On vector field reconstructions for semi-Lagrangian transport methods on geodesic grids, J. Comput. Phys., 273, 185-211, (2014) · Zbl 1351.86005
[44] Perot, B., Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys., 159, 58-89, (2000) · Zbl 0972.76068
[45] Perot, J. B.; Vidovic, D.; Wesseling, P., Mimetic reconstruction of vectors, (Arnold, D. N.; Bochev, P. B.; Lehoucq, R. B.; Nicolaides, R. A.; Shashkov, M., Compatible Spatial Discretizations, IMA Vol. Math. Appl., vol. 142, (2006), Springer New York), 173-188 · Zbl 1110.65108
[46] Raviart, P. A.; Thomas, J. M., A mixed finite-element method for 2nd order elliptic problems, (Galligani, I.; Magenes, I., Mathematical Aspects of the Finite-Element Methods, Lect. Notes Math., (1977), Springer Berlin), 292-315 · Zbl 0362.65089
[47] Ringler, T.; Petersen, M.; Higdon, R. L.; Jacobsen, D.; Jones, P. W.; Maltrud, M., A multi-resolution approach to global Ocean modeling, Ocean Model., 69, 211-232, (2013)
[48] Ringler, T. D.; Thuburn, J.; Klemp, J. B.; Skamarock, W. C., A unified approach to energy and potential vorticity dynamics for arbitrarily structured C-grids, J. Comput. Phys., 229, 3065-3090, (2010) · Zbl 1307.76054
[49] Röske, F., An atlas of surface fluxes based on the ECMWF re-analysis - A climatological dataset to force global Ocean general circulation models, (2001), Max Planck Institute for Meteorology Hamburg, Germany, Report 323
[50] Semtner, A. J., A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379-389, (1976)
[51] Skamarock, W. C.; Klemp, J. B.; Duda, M. G.; Fowler, L. D.; Park, S.; Ringler, T. D., A multiscale nonhydrostatic atmosphere model using centroidal Voronoi tessellations and C-grid staggering, Mon. Weather Rev., 140, 3090-3105, (2012)
[52] Staniforth, A.; Thuburn, J., Horizontal grids for global weather prediction and climate prediction models: a review, Q. J. R. Meteorol. Soc., 138, 1-26, (2012)
[53] Steele, M.; Morley, R.; Ermold, W., PHC: a global ocean hydrography with a high quality arctic Ocean, J. Climate, 14, 2079-2087, (2001)
[54] Stuhne, G. R.; Peltier, W. B., A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: a new numerical structure for Ocean general circulation modeling, J. Comput. Phys., 213, 704-729, (2006) · Zbl 1136.86303
[55] Stuhne, G. R.; Peltier, W. B., An unstructured C-grid based method for 3-D global Ocean dynamics: free-surface formulations and tidal test cases, Ocean Model., 28, 97-105, (2009)
[56] Taylor, M. A.; Fournier, A., A compatible and conservative spectral finite element method on unstructured grids, J. Comput. Phys., 229, 5879-5895, (2010) · Zbl 1425.76177
[57] Tomita, H.; Tsugawa, M.; Satoh, M.; Goto, K., Shallow water model on a modified icosahedral geodesic grid by using spring dynamics, J. Comput. Phys., 174, 579-613, (2001) · Zbl 1056.76058
[58] Thuburn, J.; Cotter, C., A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM J. Sci. Comput., 34, 203-225, (2012) · Zbl 1246.65155
[59] Thuburn, J.; Cotter, C. J.; Dubos, T., A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal-icosahedral and cubed-sphere grids, Geosci. Model Dev., 7, 909-929, (2014)
[60] Thuburn, J.; Cotter, C., A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes, J. Comput. Phys., 290, 274-297, (2015) · Zbl 1349.76273
[61] van der Werf, P. M.; van Leeuwen, P. J.; Ridderinkhof, H.; de Ruijter, W. P.M., Comparison between observations and models of the mozambique channel transport: seasonal cycle and eddy frequencies, J. Geophys. Res., 115, C2, (2010)
[62] da Veiga, L. B.; Lipnikov, K.; Manzini, G., The mimetic finite difference method for elliptic problems, (2014), Springer · Zbl 1286.65141
[63] Wolfram, P. J.; Fringer, O. B., Mitigating horizontal divergence “checker-board” oscillations on unstructured triangular C-grids for nonlinear hydrostatic and nonhydrostatic flows, Ocean Model., 69, 64-78, (2013)
[64] Wan, H.; Giorgetta, M. A.; Zängl, G.; Restelli, M.; Majewski, D.; Bonaventura, L.; Fröhlich, K.; Reinert, D.; Ripodas, P.; Kornblueh, L.; Förstner, J., The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids - part 1: formulation and performance of the baseline version, Geosci. Model Dev., 6, 735-763, (2013)
[65] Zalesak, S., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362, (1979) · Zbl 0416.76002
[66] Zängl, G.; Reinert, D.; Ripodas, P.; Baldauf, M., The ICON (icosahedral non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core, Q. J. R. Meteorol. Soc., 141, 563-579, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.