×

Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations. (English) Zbl 1380.65052

Summary: The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

MSC:

65D30 Numerical integration
35Q40 PDEs in connection with quantum mechanics
34G10 Linear differential equations in abstract spaces
65D05 Numerical interpolation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Kruskal, M. D.; Ladik, J. F., Solitary wave collisions, SIAM J. Appl. Math., 36, 428-437 (1979) · Zbl 0408.65075
[2] Bader, P.; Iserles, A.; Kropielnicka, K.; Singh, P., Effective approximation for the semiclassical Schrödinger equation, Found. Comput. Math., 14, 689-720 (2014) · Zbl 1302.65230
[3] Bao, W. Z.; Dong, X. C., Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120, 189-229 (2012) · Zbl 1248.65087
[4] Bank, R.; Graham, R. L.; Stoer, J.; Varga, R.; Yserentant, H., High Order Difference Methods for Time Dependent PDEs (2008), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[5] Bátkai, A.; Farkas, B.; Csomós, P.; Ostermann, A., Operator semigroups for numerical analysis, (15th Internet Seminar (2011))
[6] Bratsos, A. G., A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation, Numer. Algorithms, 43, 295-308 (2006) · Zbl 1112.65077
[7] Brenner, P.; van Wahl, W., Global classical solutions of nonlinear wave equations, Math. Z., 176, 87-121 (1981) · Zbl 0457.35059
[8] Briggs, W. L.; Henson, V. E., The DFT: An Owner’s Manual for the Discrete Fourier Transform (2000), SIAM: SIAM Philadelphia · Zbl 0827.65147
[9] Britanak, V.; Yip, P. C.; Rao, K. R., Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations (2006), Academic Press
[10] Bueno-Orovio, A.; Pérez-García, V. M.; Fenton, F. H., Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method, SIAM J. Sci. Comput., 28, 886-900 (2006) · Zbl 1114.65119
[11] Bungartz, H.-J.; Griebel, M., Sparse grids, Acta Numer., 13, 147-269 (2004) · Zbl 1118.65388
[12] Cao, W.; Guo, B., Fourier collocation method for solving nonlinear Klein-Gordon equation, J. Comput. Phys., 108, 296-305 (1993) · Zbl 0791.65095
[13] Cohen, D.; Hairer, E.; Lubich, C., Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math., 110, 113-143 (2008) · Zbl 1163.65066
[14] Cox, S.; Matthews, P., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
[15] Dehghan, M.; Ghesmati, A., Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Comput. Phys. Commun., 181, 772-786 (2010) · Zbl 1205.65267
[16] Dehghan, M.; Mohammadi, V., Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein-Gordon-Schrödinger (KGS) equations, Comput. Math. Appl., 71, 892-921 (2016) · Zbl 1443.65240
[17] Dehghan, M.; Shokri, A., Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230, 400-410 (2009) · Zbl 1168.65398
[18] Dodd, R. K.; Eilbeck, I. C.; Gibbon, J. D.; Morris, H. C., Solitons and Nonlinear Wave Equations (1982), Academic: Academic London · Zbl 0496.35001
[19] Drazin, P. J.; Johnson, R. S., Solitons: An Introduction (1989), Cambridge University Press: Cambridge University Press Cambridge UK · Zbl 0661.35001
[20] Duncan, D. B., Symplectic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 34, 1742-1760 (1997) · Zbl 0889.65093
[21] Dyn, N., On the existence of Hermite-Birkhoff quadrature formulas of Gaussian type, J. Approx. Theory, 31, 22-32 (1981) · Zbl 0509.41011
[22] Ginibre, J.; Velo, G., The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189, 487-505 (1985) · Zbl 0549.35108
[23] Grimm, V., On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations, Numer. Math., 100, 71-89 (2005) · Zbl 1074.65097
[24] Grundy, R. E., Hermite interpolation visits ordinary two-point boundary value problems, ANZIAM J., 48, 533-552 (2007) · Zbl 1130.65074
[25] Guo, B.-Y.; Li, X.; Vázquez, L., A Legendre spectral method for solving the nonlinear Klein-Gordon equation, Comput. Appl. Math., 15, 19-36 (1996) · Zbl 0856.65117
[26] Hairer, E.; Lubich, C., Long-time energy conservation of numerical methods for oscillatory differential equations, SIAM J. Numer. Anal., 38, 414-441 (2000) · Zbl 0988.65118
[27] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer: Springer Berlin, Heidelberg · Zbl 1094.65125
[28] Hesthaven, J. S.; Gottlieb, S.; Gottlieb, D., Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics (2007), Cambridge University Press · Zbl 1111.65093
[29] Hochbruck, M.; Lubich, C., A Gautschi-type method for oscillatory second-order differential equations, Numer. Math., 83, 403-426 (1999) · Zbl 0937.65077
[30] Hochbruck, M.; Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 1069-1090 (2005) · Zbl 1093.65052
[31] Hochbruck, M.; Ostermann, A., Exponential Runge-Kutta methods for parabolic problems, Appl. Numer. Math., 53, 323-339 (2005) · Zbl 1070.65099
[32] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
[33] Ibrahim, S.; Majdoub, M.; Masmoudi, N., Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity, Commun. Pure Appl. Math., 59, 1639-1658 (2006) · Zbl 1117.35049
[34] Iserles, A., A First Course in the Numerical Analysis of Differential Equations (2008), Cambridge University Press: Cambridge University Press Cambridge
[35] Janssen, J.; Vandewalle, S., On SOR waveform relaxation methods, SIAM J. Numer. Anal., 34, 2456-2481 (1997) · Zbl 0898.65038
[36] Jetter, K., Uniqueness of Gauss-Birkhoff quadrature formulas, SIAM J. Numer. Anal., 24, 147-154 (1987) · Zbl 0623.41030
[37] Kassam, A.-K.; Trefethen, L. N., Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput., 26, 1214-1233 (2005) · Zbl 1077.65105
[38] Khanamiryan, M., Quadrature methods for highly oscillatory linear and nonlinear systems of ordinary differential equations, Part I, BIT Numer. Math., 48, 743-762 (2008) · Zbl 1167.65040
[39] Kosecki, R., The unit condition and global existence for a class of nonlinear Klein-Gordon equations, J. Differ. Geom., 100, 257-268 (1992) · Zbl 0781.35062
[40] Li, S.; Vu-Quoc, L., Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32, 1839-1875 (1995) · Zbl 0847.65062
[41] Liu, C. Y.; Shi, W.; Wu, X. Y., An efficient high-order explicit scheme for solving Hamiltonian nonlinear wave equations, Appl. Math. Comput., 246, 696-710 (2014) · Zbl 1339.65130
[42] Liu, C. Y.; Wu, X. Y., Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations, J. Comput. Phys., 340, 243-275 (2017) · Zbl 1380.65205
[43] Liu, C. Y.; Wu, X., The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications, Appl. Math. Lett., 74, 60-67 (2017) · Zbl 1379.35189
[44] Lubich, C.; Ostermann, A., Multigrid dynamic iteration for parabolic equations, BIT Numer. Math., 27, 216-234 (1987) · Zbl 0623.65125
[45] Mulholland, L. S.; Huang, W. Z.; Sloan, D. M., Pseudospectral solution of near-singular problems using numerical coordinate transformations based on adaptivity, SIAM J. Sci. Comput., 19, 1261-1289 (1998) · Zbl 0913.65101
[46] Nikolov, G., Existence and uniqueness of Hermite-Birkhoff Gaussian quadrature formulas, Calcolo, 26, 41-59 (1989) · Zbl 0684.41020
[47] Pascual, P. J.; Jiménez, S.; Vázquez, L., Numerical simulations of a nonlinear Klein-Gordon model. Applications, (Computational Physics. Computational Physics, Granada, 1994. Computational Physics. Computational Physics, Granada, 1994, Lecture Notes in Physics, vol. 448 (1995), Springer: Springer Berlin), 211-270 · Zbl 0872.65079
[48] Phillips, G. M., Explicit forms for certain Hermite approximation, BIT Numer. Math., 13, 177-180 (1973) · Zbl 0269.65060
[49] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analysis, Applications (2011), Springer: Springer Berlin
[50] Sheng, Q.; Khaliq, A. Q.M.; Voss, D. A., Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme, Math. Comput. Simul., 68, 355-373 (2005) · Zbl 1073.65095
[51] Strauss, W. A., Nonlinear Wave Equations, Regional Conference Series in Mathematics, vol. 73 (1989), AMS: AMS Providence, RI
[52] Sun, Z. Z., Numerical Methods of Partial Differential Equations (2012), Science Press: Science Press Beijing, (in Chinese)
[53] Tang, W. S.; Ya, Y. J.; Zhang, J. J., High order symplectic integrators based on continuous-stage Runge-Kutta Nyström methods · Zbl 1429.65299
[54] Tourigny, Y., Product approximation for nonlinear Klein-Gordon equations, IMA J. Numer. Anal., 9, 449-462 (1990) · Zbl 0707.65088
[55] Vandewalle, S., Parallel Multigrid Waveform Relaxation for Parabolic Problems. Teubner Scripts on Numerical Mathematics (1993), B. G. Teubner: B. G. Teubner Stuttgart
[56] Wang, B.; Liu, K.; Wu, X. Y., A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems, J. Comput. Phys., 243, 210-223 (2013) · Zbl 1349.65219
[57] Wu, X. Y.; You, X.; Wang, B., Structure-Preserving Algorithms for Oscillatory Differential Equations (2013), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[58] Wu, X. Y.; Liu, K.; Shi, W., Structure-Preserving Algorithms for Oscillatory Differential Equations II (2015), Springer-Verlag: Springer-Verlag Heidelberg
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.