×

zbMATH — the first resource for mathematics

A parametric optimization approach for uncertain linear quadratic models. (English) Zbl 1380.49049
Summary: As it is well known, the optimal control of linear quadratic model is given in a feedback form, which is determined by the solution of a Riccati equation. However, the corresponding Riccati equation cannot be solved analytically in many cases. Even if an analytic solution can be obtained, it might be a complex time-oriented function. In this paper, we introduce an approximate model with parameter for simplifying the form of optimal control of uncertain linear quadratic model. First, we discuss an optimal control problem of uncertain linear quadratic model and deduce an analytic expression of optimal control. Then, we formulate an approximate model with parameter and present a parametric optimization method for solving the optimal parameter. Finally, a production planning problem is given to illustrate the efficiency of the proposed approximate model and parametric optimization approach.
MSC:
49N10 Linear-quadratic optimal control problems
49M30 Other numerical methods in calculus of variations (MSC2010)
93C41 Control/observation systems with incomplete information
PDF BibTeX Cite
Full Text: DOI
References:
[1] Awudu, I.; Zhang, J., Stochastic production planning for a biofuel supply chain under demand and price uncertainties, Appl. Energy, 103, 1, 189-196, (2013)
[2] Bismut, J. M., Linear quadratic optimal stochastic control with random coefficients, SIAM J. Control Optim., 14, 3, 419-444, (1976) · Zbl 0331.93086
[3] Chen, X.; Liu, B., Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis Mak, 9, 1, 69-81, (2010) · Zbl 1196.34005
[4] Deng, L.; Zhu, Y., Uncertain optimal control of linear quadratic models with jump, Math. Comput. Model., 57, 2432-2441, (2013) · Zbl 1286.93202
[5] Fleming, W. H.; Sethi, S. P.; Soner, H. M., An optimal stochastic production planning problem with randomly fluctuating demand, SIAM J. Control Optim., 25, 6, 1494-1502, (1987) · Zbl 0635.93077
[6] Florian, M.; Klein, M., Deterministic production planning with concave costs and capacity constraints, Manag. Sci., 18, 1, 12-20, (1971) · Zbl 0273.90023
[7] Ge, X.; Zhu, Y., A necessary condition of optimality for uncertain optimal control problem, Fuzzy Optim. Decis. Mak., 12, 1, 41-51, (2013) · Zbl 1415.49017
[8] Goh, C. J.; Teo, K. L., Control parameterization: a unified approach to optimal control problems with general constraints, Automatica, 24, 1, 3-18, (1988) · Zbl 0637.49017
[9] Ignaciuk, P.; Bartoszewicz, A., Linear-quadratic optimal control of periodic-review perishable inventory cystems, IEEE Trans. Control Syst. Technol., 20, 5, 1400-1407, (2012)
[10] Kahveci, N. E.; Ioannou, P. A.; Mirmirani, M. D., Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications, IEEE Trans. Control Syst. Technol., 16, 4, 691-707, (2008)
[11] Kang, Y.; Zhu, Y., Bang-bang optimal control for multi-stage uncertain systems, Inf. Int. Interdiscip. J., 15, 8, 3229-3238, (2012) · Zbl 1323.49014
[12] Kohlmann, M.; Tang, S., Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging, Stoch. Process. Appl., 97, 2, 255-288, (2002) · Zbl 1064.93050
[13] Kohlmann, M.; Zhou, X., Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach, SIAM J. Control Optim., 38, 5, 1392-1407, (2000) · Zbl 0960.60052
[14] Laan, E. V.D.; Salomon, M., Production planning and inventory control with remanufacturing and disposal, Eur. J. Oper. Res., 102, 2, 264-278, (1997) · Zbl 0955.90018
[15] Liu, B., Uncertainty theory, (2007), Springer-Verlag Berlin
[16] Liu, B., Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2, 1, 3-16, (2008)
[17] Liu, B., Some research problems in uncertainty theory, J. Uncertain Syst., 3, 3-10, (2009)
[18] Liu, B., Uncertainty theory: A branch of mathematics for modeling human uncertainty, (2010), Springer-Verlag Berlin
[19] Liu, B., Why is there a need for uncertainty theory?, J. Uncertain Syst., 6, 1, 3-10, (2012)
[20] Sheng, L.; Zhu, Y., Optimistic value model of uncertain optimal control, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 21, Suppl.1, 75-87, (2013) · Zbl 1322.93064
[21] Shu, Y.; Zhu, Y., Stability and optimal control for uncertain continuous-time singular systems, Eur. J. Control, 34, 16-23, (2017) · Zbl 1358.93154
[22] Stengel, R. F., Optimal control and estimation, (1994), Dover Publications New York · Zbl 0854.93001
[23] Xu, X.; Zhu, Y., Uncertain bang-bang control for continuous time model, Cybern. Syst. Int. J., 43, 6, 515-527, (2012) · Zbl 1331.93228
[24] Yang, X.; Gao, J., Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Trans. Fuzzy Syst., 24, 4, 819-826, (2016)
[25] Zhu, Y., Uncertain optimal control with application to a portfolio selection model, Cybern. Syst., 41, 7, 535-547, (2010) · Zbl 1225.93121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.