×

zbMATH — the first resource for mathematics

Intersections on tropical moduli spaces. (English) Zbl 1379.14035
Summary: This article explores to which extent the algebro-geometric theory of rational descendant Gromov-Witten invariants can be carried over to the tropical world. Despite the fact that the tropical moduli-spaces we work with are non-compact, the answer is surprisingly positive. We discuss the string, divisor and dilaton equations, we prove a splitting lemma describing the intersection with a “boundary” divisor, and we prove general tropical versions of the WDVV, respectively, topological recursion equations (under some assumptions). As a direct application, we prove that, for the toric varieties \(\mathbb P^1\), \(\mathbb P^2\), \(\mathbb P^1 \times \mathbb P^1\) and with \(\Psi\)-conditions only in combination with point conditions, the tropical and classical descendant Gromov-Witten invariants coincide (which extends the result for \(\mathbb P^2\) in [H. Markwig and the author, Manuscr. Math. 129, No. 3, 293–335 (2009; Zbl 1171.14039)]. Our approach uses tropical intersection theory and unifies and simplifies some parts of the existing tropical enumerative geometry (for rational curves).

MSC:
14T05 Tropical geometry (MSC2010)
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Lars Allermann and Johannes Rau, First steps in tropical intersection theory , Math. Z. 264 (2010), 633-670. · Zbl 1193.14074 · doi:10.1007/s00209-009-0483-1 · arxiv:0709.3705
[2] Lars Allermann and Johannes Rau, Tropical rational equivalence on \(\RR^r\) , preprint, arXiv: · Zbl 1193.14074 · arxiv.org · arxiv:0811.2860.
[3] Renzo Cavalieri, Paul Johnson and Hannah Markwig, Tropical Hurwitz numbers , J. Alg. Comb. 32 (2010), 241-265, also at arXiv: · Zbl 1218.14058 · doi:10.1007/s10801-009-0213-0 · arxiv:0804.0579
[4] Marina Franz, The tropical Kontsevich formula for toric surfaces , Ph.D. thesis, TU Kaiserslautern, 2008.
[5] Marina Franz and Hannah Markwig, Tropical enumerative invariants of \(\FF_0\) and \(\FF_2\) , Adv. Geom. 11 (2011), 49-72. · Zbl 1218.14059 · doi:10.1515/advgeom.2010.038
[6] William Fulton and Rahul Pandharipande, Notes on stable maps and quantum cohomology , Proc. Symp. Pure Math. 62 (1997), 45-96. · Zbl 0898.14018 · doi:10.1090/pspum/062.2/1492534
[7] William Fulton and Bernd Sturmfels, Intersection theory on toric varieties , Topology 36 (1997), 335-353. · Zbl 0885.14025 · doi:10.1016/0040-9383(96)00016-X · arxiv:alg-geom/9403002
[8] Andreas Gathmann, Michael Kerber and Hannah Markwig, Tropical fans and the moduli spaces of tropical curves , Comp. Math. 145 (2009), 173-195. · Zbl 1169.51021 · doi:10.1112/S0010437X08003837 · arxiv:0708.2268
[9] Andreas Gathmann and Hannah Markwig, Kontsevich’s formula and the WDVV equations in tropical geometry , Adv. Math. 217 (2008), 537-560. · Zbl 1131.14057 · doi:10.1016/j.aim.2007.08.004 · arxiv:math/0509628
[10] Andreas Gathmann and Eva-Maria Zimmermann, The WDVV equations in tropical geometry , in preparation. · Zbl 1131.14057
[11] Matthias Herold, Intersection theory of the tropical moduli spaces of curves , Ph.D. thesis, TU Kaiserslautern, 2007. · Zbl 1226.14081
[12] Eric Katz, A tropical toolkit , Expo. Math. 27 (2009), 1-36. · Zbl 1193.14004 · doi:10.1016/j.exmath.2008.04.003
[13] —-, Tropical intersection theory from toric varieties , preprint, arXiv: · arxiv.org · arxiv:0907.2488.
[14] Michael Kerber and Hannah Markwig, Counting tropical elliptic plane curves with fixed \(j\)-invariant , Comm. Math. Helv. 84 (2009), 387-427. · Zbl 1205.14071 · doi:10.4171/CMH/166 · www.ems-ph.org · arxiv:math/0608472
[15] —-, Intersecting Psi-classes on tropical \(M_{0,n}\) , Int. Math. Res. Not. 2009 , 221-240. · Zbl 1205.14070 · doi:10.1093/imrn/rnn130 · arxiv:0709.3953
[16] Joachim Kock and Israel Vainsencher, An Invitation to quantum cohomology , Progr. Math. 249 , 2007. · Zbl 1114.14001
[17] Hannah Markwig and Johannes Rau, Tropical descendant Gromov-Witten invariants , Manuscr. Math. 129 (2009), 293-335. · Zbl 1171.14039 · doi:10.1007/s00229-009-0256-5 · arxiv:0809.1102
[18] Grigory Mikhalkin, Enumerative tropical geometry in \(\RR^2\) , J. Amer. Math. Soc. 18 (2005), 313-377. · Zbl 1092.14068 · doi:10.1090/S0894-0347-05-00477-7
[19] —-, Tropical geometry and its applications , Int. Cong. Math. 2 (2006), 827-852. · Zbl 1103.14034 · arxiv:math/0601041
[20] —-, Moduli spaces of rational tropical curves , preprint, arXiv: · arxiv.org · arxiv:0704.0839.
[21] David Speyer and Bernd Sturmfels, Tropical Grassmannians , Adv. Geom. 4 (2004), 389-411. · Zbl 1065.14071 · doi:10.1515/advg.2004.023 · eudml:124758 · arxiv:math/0304218
[22] Eva-Maria Zimmermann, Generalizations of the tropical Kontsevich formula to higher dimensions , Ph.D. thesis, TU Kaiserslautern, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.