×

Diseased social predators. (English) Zbl 1378.92057

Summary: Social predators benefit from cooperation in the form of increased hunting success, but may be at higher risk of disease infection due to living in groups. Here, we use mathematical modeling to investigate the impact of disease transmission on the population dynamics benefits provided by group hunting. We consider a predator-prey model with foraging facilitation that can induce strong Allee effects in the predators. We extend this model by an infectious disease spreading horizontally and vertically in the predator population. The model is a system of three nonlinear differential equations. We analyze the equilibrium points and their stability as well as one- and two-parameter bifurcations. Our results show that weakly cooperating predators go unconditionally extinct for highly transmissible diseases. By contrast, if cooperation is strong enough, the social behavior mediates conditional predator persistence. The system is bistable, such that small predator populations are driven extinct by the disease or a lack of prey, and large predator populations survive because of their cooperation even though they would be doomed to extinction in the absence of group hunting. We identify a critical cooperation level that is needed to avoid the possibility of unconditional predator extinction. We also investigate how transmissibility and cooperation affect the stability of predator-prey dynamics. The introduction of parasites may be fatal for small populations of social predators that decline for other reasons. For invasive predators that cooperate strongly, biocontrol by releasing parasites alone may not be sufficient.

MSC:

92D25 Population dynamics (general)
92D30 Epidemiology
92D50 Animal behavior
92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allee WC (1931) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago · doi:10.5962/bhl.title.7313
[2] Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson AP, Ezenwa V, Jones KE, Pedersen AB, Poss M, Pulliam JRC (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Ann Rev Ecol Evol Syst 34:517-547 · doi:10.1146/annurev.ecolsys.34.030102.151725
[3] Anderson RM (1982) Theoretical basis for the use of pathogens as biological control agents of pest species. Parasitology 84:3-33 · doi:10.1017/S0031182000053592
[4] Bate AM, Hilker FM (2013) Complex dynamics in an eco-epidemiological model. Bull Math Biol 75:2059-2078 · Zbl 1310.92050 · doi:10.1007/s11538-013-9880-z
[5] Bate AM, Hilker FM (2014) Disease in group-defending prey can benefit predators. Theor Ecol 7:87-100 · doi:10.1007/s12080-013-0200-x
[6] Beauchamp G (2014) Social predation: how group living benefits predators and prey. Academic Press, London
[7] Berec L (2010) Impacts of foraging facilitation among predators on predator-prey dynamics. Bull Math Biol 72:94-121 · Zbl 1184.92048 · doi:10.1007/s11538-009-9439-1
[8] Berec L, Maxin D (2013) Fatal or harmless: extreme bistability induced by sterilizing, sexually transmitted pathogens. Bull Math Biol 75:258-273 · Zbl 1310.92051 · doi:10.1007/s11538-012-9802-5
[9] Berec L, Boukal DS, Berec M (2001) Linking the Allee effect, sexual reproduction, and temperature-dependent sex determination via spatial dynamics. Am Nat 157:217-230
[10] Bester MN, Bloomer JP, van Aarde RJ, Erasmus BH, van Rensburg PJJ, Skinner JD, Howell PG, Naude TW (2002) A review of the successful eradication of feral cats from sub-Antarctic Marion Island, Southern Indian Ocean. S Afr J Wildl Res 32:65-73
[11] Busenberg S, van den Driessche P (1990) Analysis of a disease transmission model in a population with varying size. J Math Biol 28:257-270 · Zbl 0725.92021 · doi:10.1007/BF00178776
[12] Côté IM, Poulin R (1995) Parasitism and group size in social animals: a meta-analysis. Behav Ecol 6:159-165 · doi:10.1093/beheco/6.2.159
[13] Courchamp F, Macdonald DW (2001) Crucial importance of pack size in the African wild dog Lycaon pictus. Anim Conserv 4:169-174 · doi:10.1017/S1367943001001196
[14] Courchamp F, Sugihara G (1999) Modeling the biological control of an alien predator to protect island species from extinction. Ecol Appl 9:112-123 · doi:10.1890/1051-0761(1999)009[0112:MTBCOA]2.0.CO;2
[15] Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, New York · doi:10.1093/acprof:oso/9780198570301.001.0001
[16] Francomano E, Hilker FM, Paliaga M, Venturino E (2016) On basins of attraction for a predator-prey model via meshless approximation. AIP Conference Proceedings 1776(1):070007. doi:10.1063/1.4965353
[17] Francomano E, Hilker FM, Paliaga M, Venturino E (2017) An efficient method to reconstruct invariant manifolds of saddle points. Dolomit Res Notes Approx 10:25-30 · Zbl 1370.34078 · doi:10.1186/s13104-016-2323-9
[18] Francomano E, Hilker FM, Paliaga M, Venturino E (in press) Separatrix reconstruction to identify tipping points in an eco-epidemiological model. Appl Math Comput. doi:10.1016/j.amc.2017.07.022 · Zbl 1426.92051
[19] Hilker FM (2009) Epidemiological models with demographic Allee effect. In: Mondaini RP (ed). In: Biomat 2008: international symposium on mathematical and computational biology. World Scientific, Singapore, pp 52-77
[20] Hilker FM (2010) Population collapse to extinction: the catastrophic combination of parasitism and Allee effect. J Biol Dyn 4:86-101 · Zbl 1315.92060 · doi:10.1080/17513750903026429
[21] Hilker FM, Schmitz K (2008) Disease-induced stabilization of predator-prey oscillations. J Theor Biol 255:299-306 · Zbl 1400.92487 · doi:10.1016/j.jtbi.2008.08.018
[22] Hilker FM, Langlais M, Malchow H (2009) The Allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations. Am Nat 173:72-88 · doi:10.1086/593357
[23] Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford · Zbl 0989.22001
[24] Loehle C (1995) Social barriers to pathogen transmission in wild animal populations. Ecology 76:326-335 · doi:10.2307/1941192
[25] Mangin S, Gauthier-Clerc M, Frenot Y, Gendner JP, Le Maho Y (2003) Ticks Ixodes uriae and the breeding performance of a colonial seabird, king penguin Aptenodytes patagonicus. J Avian Biol 34:30-34 · doi:10.1034/j.1600-048X.2003.02916.x
[26] McMahon TA, Finlayson BL, Haines AT, Srikanthan R (1992) Global runoff: continental comparisons of annual flows and peak discharges. Catena Verlag, Cremlingen
[27] Mena-Lorca J, Hethcote HW (1992) Dynamic models of infectious diseases as regulator of population sizes. J Math Biol 30:693-716 · Zbl 0748.92012
[28] Numfor E, Hilker FM, Lenhart S (2017) Optimal culling and biocontrol in a predator-prey model. Bull Math Biol 79:88-116 · Zbl 1373.92108 · doi:10.1007/s11538-016-0228-3
[29] Oliveira NM, Hilker FM (2010) Modelling disease introduction as biological control of invasive predators to preserve endangered prey. Bull Math Biol 72:444-468 · Zbl 1185.92092 · doi:10.1007/s11538-009-9454-2
[30] Packer C, Ruttan L (1988) The evolution of cooperative hunting. Am Nat 132:159-198 · doi:10.1086/284844
[31] Rubenstein, DI; Bateson, PPG (ed.); Klopfer, PH (ed.), On predation, competition, and the advantages of group living, 205-231 (1978), New York · doi:10.1007/978-1-4684-2901-5_9
[32] Rubenstein DR, Lovette IJ (2007) Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr Biol 17:1414-1419 · doi:10.1016/j.cub.2007.07.032
[33] Teixeira Alves M, Hilker FM (2017) Hunting cooperation and Allee effects in predators. J Theor Biol 419:13-22 · Zbl 1370.92151 · doi:10.1016/j.jtbi.2017.02.002
[34] Thieme HR, Dhirasakdanon T, Han Z, Trevino R (2009) Species decline and extinction: synergy of infectious diseases and Allee effect? J Biol Dyn 3:305-323 · Zbl 1342.92206 · doi:10.1080/17513750802376313
[35] Vander Zanden MJ, Hansen GJA, Higgins SN, Kornis MS (2010) A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. J Gt Lakes Res 36:199-205 · doi:10.1016/j.jglr.2009.11.002
[36] Venturino E (2016) Ecoepidemiology: a more comprehensive view of population interactions. Math Modell Nat Phenom 11:49-90 · Zbl 1384.92060 · doi:10.1051/mmnp/201611104
[37] Ward P, Enders M (1985) Conflict and cooperation in the group feeding of the social spider Stegodyphus mimosarum. Behavior 94:167-182 · doi:10.1163/156853985X00325
[38] Watts DP, Mitani JC (2002) Hunting behavior of chimpanzees at Ngogo, Kibale National Park, Uganda. Int J Primatol 23:1-28 · doi:10.1023/A:1013270606320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.