×

zbMATH — the first resource for mathematics

Standard model mass spectrum in inflationary universe. (English) Zbl 1378.85005
Summary: We work out the Standard Model (SM) mass spectrum during inflation with quantum corrections, and explore its observable consequences in the squeezed limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied in detail. We also illustrate how some inflationary loop diagrams can be computed neatly by Wick-rotating the inflation background to Euclidean signature and by dimensional regularization.

MSC:
85A40 Cosmology
83F05 Cosmology
81T60 Supersymmetric field theories in quantum mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, X.; Wang, Y., Large non-gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev., D 81, 063511, (2010)
[2] Chen, X.; Wang, Y., Quasi-single field inflation and non-gaussianities, JCAP, 04, 027, (2010)
[3] Baumann, D.; Green, D., Signatures of supersymmetry from the early universe, Phys. Rev., D 85, 103520, (2012)
[4] Assassi, V.; Baumann, D.; Green, D., On soft limits of inflationary correlation functions, JCAP, 11, 047, (2012)
[5] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051, (2013) · Zbl 1342.83110
[6] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE]. · Zbl 1390.83439
[7] Chen, X.; Namjoo, MH; Wang, Y., Quantum primordial standard clocks, JCAP, 02, 013, (2016)
[8] Lee, H.; Baumann, D.; Pimentel, GL, Non-gaussianity as a particle detector, JHEP, 12, 040, (2016) · Zbl 1390.83465
[9] Sefusatti, E.; Fergusson, JR; Chen, X.; Shellard, EPS, Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background, JCAP, 08, 033, (2012)
[10] Norena, J.; Verde, L.; Barenboim, G.; Bosch, C., Prospects for constraining the shape of non-gaussianity with the scale-dependent bias, JCAP, 08, 019, (2012)
[11] Meerburg, PD; Münchmeyer, M.; Muñoz, JB; Chen, X., Prospects for cosmological collider physics, JCAP, 03, 050, (2017)
[12] Chen, X.; Wang, Y., Quasi-single field inflation with large mass, JCAP, 09, 021, (2012)
[13] Gong, J-O; Pi, S.; Sasaki, M., Equilateral non-gaussianity from heavy fields, JCAP, 11, 043, (2013)
[14] Kehagias, A.; Riotto, A., High energy physics signatures from inflation and conformal symmetry of de Sitter, Fortsch. Phys., 63, 531, (2015) · Zbl 1338.83216
[15] Dimastrogiovanni, E.; Fasiello, M.; Kamionkowski, M., Imprints of massive primordial fields on large-scale structure, JCAP, 02, 017, (2016)
[16] Schmidt, F.; Chisari, NE; Dvorkin, C., Imprint of inflation on galaxy shape correlations, JCAP, 10, 032, (2015)
[17] Emami, R., Spectroscopy of masses and couplings during inflation, JCAP, 04, 031, (2014)
[18] Bonga, B.; Brahma, S.; Deutsch, A-S; Shandera, S., Cosmic variance in inflation with two light scalars, JCAP, 05, 018, (2016)
[19] Chen, X.; Wang, Y.; Xianyu, Z-Z, Loop corrections to standard model fields in inflation, JHEP, 08, 051, (2016) · Zbl 1390.83439
[20] Burgess, CP; Leblond, L.; Holman, R.; Shandera, S., Super-hubble de Sitter fluctuations and the dynamical RG, JCAP, 03, 033, (2010)
[21] Bezrukov, FL; Shaposhnikov, M., The standard model Higgs boson as the inflaton, Phys. Lett., B 659, 703, (2008)
[22] Bezrukov, F., The Higgs field as an inflaton, Class. Quant. Grav., 30, 214001, (2013) · Zbl 1277.83003
[23] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model background of the cosmological collider, arXiv:1610.06597 [INSPIRE].
[24] E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev.D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE]. · Zbl 0606.53043
[25] Planck collaboration, P.A.R. Ade et al., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys.571 (2014) A24 [arXiv:1303.5084] [INSPIRE].
[26] L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite, arXiv:1606.00180 [INSPIRE]. · Zbl 1317.81268
[27] O. Doré et al., Cosmology with the SPHEREX all-sky spectral survey, arXiv:1412.4872 [INSPIRE].
[28] LSST Science and LSST Project collaborations, P.A. Abell et al., LSST science book, version 2.0, arXiv:0912.0201 [INSPIRE].
[29] S. Furlanetto, S.P. Oh and F. Briggs, Cosmology at low frequencies: the 21 cm transition and the high-redshift universe, Phys. Rept.433 (2006) 181 [astro-ph/0608032] [INSPIRE].
[30] Pritchard, JR; Loeb, A., 21 cm cosmology, Rept. Prog. Phys., 75, 086901, (2012)
[31] J.B. Muñoz, Y. Ali-Haïmoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21 cm fluctuations in the dark ages, Phys. Rev.D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].
[32] M. Sasaki, J. Valiviita and D. Wands, Non-Gaussianity of the primordial perturbation in the curvaton model, Phys. Rev.D 74 (2006) 103003 [astro-ph/0607627] [INSPIRE]. · Zbl 1247.83068
[33] P. Creminelli, On non-Gaussianities in single-field inflation, JCAP10 (2003) 003 [astro-ph/0306122] [INSPIRE].
[34] Wang, Y.; Xue, W., Inflation and alternatives with blue tensor spectra, JCAP, 10, 075, (2014)
[35] He, M.; etal., Differentiating G-inflation from string gas cosmology using the effective field theory approach, JCAP, 12, 040, (2016)
[36] Meulen, M.; Smit, J., Classical approximation to quantum cosmological correlations, JCAP, 11, 023, (2007)
[37] Higuchi, A.; Marolf, D.; Morrison, IA, On the equivalence between Euclidean and in-in formalisms in de Sitter QFT, Phys. Rev., D 83, 084029, (2011)
[38] Rajaraman, A., On the proper treatment of massless fields in Euclidean de Sitter space, Phys. Rev., D 82, 123522, (2010)
[39] López Nacir, D.; Mazzitelli, FD; Trombetta, LG, \(O\)(\(N\) ) model in Euclidean de Sitter space: beyond the leading infrared approximation, JHEP, 09, 117, (2016) · Zbl 1390.83470
[40] Andreassen, A.; Frost, W.; Schwartz, MD, Consistent use of effective potentials, Phys. Rev., D 91, 016009, (2015)
[41] Andreassen, A.; Frost, W.; Schwartz, MD, Consistent use of the standard model effective potential, Phys. Rev. Lett., 113, 241801, (2014)
[42] Hook, A.; Kearney, J.; Shakya, B.; Zurek, KM, Probable or improbable universe? correlating electroweak vacuum instability with the scale of inflation, JHEP, 01, 061, (2015)
[43] Herranen, M.; Markkanen, T.; Nurmi, S.; Rajantie, A., Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett., 113, 211102, (2014)
[44] Kearney, J.; Yoo, H.; Zurek, KM, Is a Higgs vacuum instability fatal for high-scale inflation?, Phys. Rev., D 91, 123537, (2015)
[45] Espinosa, JR; etal., The cosmological higgstory of the vacuum instability, JHEP, 09, 174, (2015) · Zbl 1388.83910
[46] Allison, K., Higgs ξ-inflation for the 125\(-\)126 gev Higgs: a two-loop analysis, JHEP, 02, 040, (2014)
[47] Bednyakov, AV; Pikelner, AF; Velizhanin, VN, Three-loop SM β-functions for matrix Yukawa couplings, Phys. Lett., B 737, 129, (2014) · Zbl 1317.81268
[48] Degrassi, G.; etal., Higgs mass and vacuum stability in the standard model at NNLO, JHEP, 08, 098, (2012)
[49] Candelas, P.; Raine, DJ, General relativistic quantum field theory — an exactly soluble model, Phys. Rev., D 12, 965, (1975)
[50] Allen, B.; Lütken, CA, Spinor two point functions in maximally symmetric spaces, Commun. Math. Phys., 106, 201, (1986) · Zbl 0606.53043
[51] S.-P. Miao and R.P. Woodard, Leading log solution for inflationary Yukawa, Phys. Rev.D 74 (2006) 044019 [gr-qc/0602110] [INSPIRE].
[52] Koksma, JF; Prokopec, T., Fermion propagator in cosmological spaces with constant deceleration, Class. Quant. Grav., 26, 125003, (2009) · Zbl 1170.83495
[53] Miao, SP, Quantum gravitational effects on massive fermions during inflation I, Phys. Rev., D 86, 104051, (2012)
[54] Chen, X., Primordial non-gaussianities from inflation models, Adv. Astron., 2010, 638979, (2010)
[55] Wang, Y., Inflation, cosmic perturbations and non-gaussianities, Commun. Theor. Phys., 62, 109, (2014) · Zbl 1294.83001
[56] J. Gleyzes, R. de Putter, D. Green and O. Doré, Biasing and the search for primordial non-Gaussianity beyond the local type, arXiv:1612.06366 [INSPIRE].
[57] Bezrukov, F.; Rubio, J.; Shaposhnikov, M., Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev., D 92, 083512, (2015)
[58] He, H-J; Xianyu, Z-Z, Extending Higgs inflation with TeV scale new physics, JCAP, 10, 019, (2014)
[59] Xianyu, Z-Z; He, H-J, Asymptotically safe Higgs inflation, JCAP, 10, 083, (2014)
[60] Ellis, J.; He, H-J; Xianyu, Z-Z, new Higgs inflation in a no-scale supersymmetric S\(U\) (5) GUT, Phys. Rev., D 91, 021302, (2015)
[61] Ge, S-F; He, H-J; Ren, J.; Xianyu, Z-Z, Realizing dark matter and Higgs inflation in light of LHC diphoton excess, Phys. Lett., B 757, 480, (2016) · Zbl 1360.81330
[62] Ellis, J.; He, H-J; Xianyu, Z-Z, Higgs inflation, reheating and gravitino production in no-scale supersymmetric guts, JCAP, 08, 068, (2016)
[63] Hamada, Y.; Kawai, H.; Oda, K-Y; Park, SC, Higgs inflation from standard model criticality, Phys. Rev., D 91, 053008, (2015)
[64] Hamada, Y.; Kawai, H.; Oda, K-Y, Predictions on mass of Higgs portal scalar dark matter from Higgs inflation and flat potential, JHEP, 07, 026, (2014)
[65] Rubio, J.; Shaposhnikov, M., Higgs-Dilaton cosmology: universality versus criticality, Phys. Rev., D 90, 027307, (2014)
[66] Ren, J.; Xianyu, Z-Z; He, H-J, Higgs gravitational interaction, weak boson scattering and Higgs inflation in Jordan and Einstein frames, JCAP, 06, 032, (2014)
[67] Xianyu, Z-Z; Ren, J.; He, H-J, Gravitational interaction of Higgs boson and weak boson scattering, Phys. Rev., D 88, 096013, (2013)
[68] M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, hep-th/0110007 [INSPIRE].
[69] Anninos, D., De Sitter musings, Int. J. Mod. Phys., A 27, 1230013, (2012) · Zbl 1247.83068
[70] J.L. Synge, Relativity: the general theory, North-Holland, Amsterdam The Netherlands, (1960) [INSPIRE].
[71] Allen, B.; Jacobson, T., Vector two point functions in maximally symmetric spaces, Commun. Math. Phys., 103, 669, (1986) · Zbl 0632.53060
[72] A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group S\(O\)(N, 1), J. Math. Phys.28 (1987) 1553 [Erratum ibid.43 (2002) 6385] [INSPIRE]. · Zbl 0656.58046
[73] Marolf, D.; Morrison, IA, The IR stability of de Sitter: loop corrections to scalar propagators, Phys. Rev., D 82, 105032, (2010)
[74] I.T. Drummond and G.M. Shore, Dimensional regularization of massless quantum electrodynamics in spherical space-time. 1, Annals Phys.117 (1979) 89 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.