×

zbMATH — the first resource for mathematics

Generalized gravity from modified DFT. (English) Zbl 1378.83094
Summary: Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.

MSC:
83E50 Supergravity
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE]. · Zbl 1390.83426
[2] Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, AA, Scale invariance of the η-deformed ads_{5} × S\^{}{5} superstring, T-duality and modified type-II equations, Nucl. Phys., B 903, 262, (2016) · Zbl 1332.81167
[3] Grisaru, MT; Howe, PS; Mezincescu, L.; Nilsson, B.; Townsend, PK, N = 2 superstrings in a supergravity background, Phys. Lett., B 162, 116, (1985)
[4] Bergshoeff, E.; Sezgin, E.; Townsend, PK, Superstring actions in D = 3, 4, 6, 10 curved superspace, Phys. Lett., B 169, 191, (1986)
[5] Klimčík, C., Yang-Baxter σ-models and ds/AdS T duality, JHEP, 12, 051, (2002)
[6] Klimčík, C., On integrability of the Yang-Baxter σ-model, J. Math. Phys., 50, 043508, (2009) · Zbl 1215.81099
[7] Klimčík, C., Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys., 104, 1095, (2014) · Zbl 1359.70102
[8] Delduc, F.; Magro, M.; Vicedo, B., On classical q-deformations of integrable σ-models, JHEP, 11, 192, (2013) · Zbl 1342.81182
[9] Matsumoto, T.; Yoshida, K., Yang-Baxter σ-models based on the CYBE, Nucl. Phys., B 893, 287, (2015) · Zbl 1348.81379
[10] Delduc, F.; Magro, M.; Vicedo, B., An integrable deformation of the ads_{5}×S\^{}{5} superstring action, Phys. Rev. Lett., 112, 051601, (2014) · Zbl 1333.81322
[11] Delduc, F.; Magro, M.; Vicedo, B., Derivation of the action and symmetries of the q-deformed ads_{5} × S\^{}{5} superstring, JHEP, 10, 132, (2014) · Zbl 1333.81322
[12] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., Jordanian deformations of the ads_{5}xs\^{}{5} superstring, JHEP, 04, 153, (2014)
[13] Drinfeld, VG, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl., 32, 254, (1985)
[14] Drinfeld, VG, Quantum groups, J. Sov. Math., 41, 898, (1988) · Zbl 0641.16006
[15] Jimbo, M., A q difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 10, 63, (1985) · Zbl 0587.17004
[16] Arutyunov, G.; Borsato, R.; Frolov, S., S-matrix for strings on η-deformed ads5 x S5, JHEP, 04, 002, (2014)
[17] Arutyunov, G.; Borsato, R.; Frolov, S., Puzzles of η-deformed ads_{5}× S\^{}{5}, JHEP, 12, 049, (2015) · Zbl 1388.83726
[18] Hoare, B.; Tseytlin, AA, Type IIB supergravity solution for the T-dual of the η-deformed ads_{5}× S\^{}{5} superstring, JHEP, 10, 060, (2015) · Zbl 1388.83824
[19] Hoare, B.; Tseytlin, AA, On integrable deformations of superstring σ-models related to ads_{n} × S\^{}{n} supercosets, Nucl. Phys., B 897, 448, (2015) · Zbl 1329.81317
[20] Matsumoto, T.; Yoshida, K., Lunin-Maldacena backgrounds from the classical Yang-Baxter equation — towards the gravity/CYBE correspondence, JHEP, 06, 135, (2014) · Zbl 1333.83196
[21] Matsumoto, T.; Yoshida, K., Integrability of classical strings dual for noncommutative gauge theories, JHEP, 06, 163, (2014) · Zbl 1333.81262
[22] Matsumoto, T.; Yoshida, K., Schrödinger geometries arising from Yang-Baxter deformations, JHEP, 04, 180, (2015) · Zbl 1388.83866
[23] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., A Jordanian deformation of AdS space in type IIB supergravity, JHEP, 06, 146, (2014) · Zbl 1333.83195
[24] Matsumoto, T.; Yoshida, K., Yang-Baxter deformations and string dualities, JHEP, 03, 137, (2015) · Zbl 1388.83865
[25] Matsumoto, T.; Yoshida, K., Integrable deformations of the ads_{5} × S\^{}{5} superstring and the classical Yang-Baxter equation — towards the gravity/CYBE correspondence —, J. Phys. Conf. Ser., 563, 012020, (2014)
[26] Matsumoto, T.; Yoshida, K., Towards the gravity/CYBE correspondence — the current status —, J. Phys. Conf. Ser., 670, 012033, (2016)
[27] Tongeren, SJ, On classical Yang-Baxter based deformations of the ads_{5} × S\^{}{5} superstring, JHEP, 06, 048, (2015)
[28] Tongeren, SJ, Yang-Baxter deformations, AdS/CFT and twist-noncommutative gauge theory, Nucl. Phys., B 904, 148, (2016) · Zbl 1332.81197
[29] Crichigno, PM; Matsumoto, T.; Yoshida, K., Deformations of T \^{}{1,1} as Yang-Baxter σ-models, JHEP, 12, 085, (2014)
[30] Marcos Crichigno, P.; Matsumoto, T.; Yoshida, K., Towards the gravity/CYBE correspondence beyond integrability — Yang-Baxter deformations of T \^{}{1,1}, J. Phys. Conf. Ser., 670, 012019, (2016)
[31] H. Kyono and K. Yoshida, Supercoset construction of Yang-Baxter deformed AdS_{5}×\(S\)\^{}{5}backgrounds, PTEP2016 (2016) 083B03 [arXiv:1605.02519] [INSPIRE].
[32] Hoare, B.; Tongeren, SJ, On Jordanian deformations of ads_{5} and supergravity, J. Phys., A 49, 434006, (2016) · Zbl 1352.81050
[33] Orlando, D.; Reffert, S.; Sakamoto, J-i; Yoshida, K., Generalized type IIB supergravity equations and non-abelian classical r-matrices, J. Phys., A 49, 445403, (2016) · Zbl 1354.83054
[34] Borsato, R.; Wulff, L., Target space supergeometry of η and λ-deformed strings, JHEP, 10, 045, (2016) · Zbl 1390.81412
[35] Osten, D.; Tongeren, SJ, Abelian Yang-Baxter deformations and tst transformations, Nucl. Phys., B 915, 184, (2017) · Zbl 1354.81048
[36] Tongeren, SJ, Almost abelian twists and AdS/CFT, Phys. Lett., B 765, 344, (2017) · Zbl 1369.81081
[37] Siegel, W., Two vierbein formalism for string inspired axionic gravity, Phys. Rev., D 47, 5453, (1993)
[38] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev., D 48, 2826, (1993)
[39] W. Siegel, Manifest duality in low-energy superstrings, hep-th/9308133 [INSPIRE]. · Zbl 0844.58101
[40] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009)
[41] Hull, C.; Zwiebach, B., The gauge algebra of double field theory and Courant brackets, JHEP, 09, 090, (2009)
[42] Hohm, O.; Hull, C.; Zwiebach, B., Background independent action for double field theory, JHEP, 07, 016, (2010) · Zbl 1290.81069
[43] Hohm, O.; Hull, C.; Zwiebach, B., Generalized metric formulation of double field theory, JHEP, 08, 008, (2010) · Zbl 1291.81255
[44] Jeon, I.; Lee, K.; Park, J-H, Differential geometry with a projection: application to double field theory, JHEP, 04, 014, (2011) · Zbl 1250.81085
[45] Hohm, O.; Kwak, SK, Frame-like geometry of double field theory, J. Phys., A 44, 085404, (2011) · Zbl 1209.81168
[46] Jeon, I.; Lee, K.; Park, J-H, Stringy differential geometry, beyond Riemann, Phys. Rev., D 84, 044022, (2011)
[47] Hohm, O.; Kwak, SK; Zwiebach, B., Unification of type II strings and T-duality, Phys. Rev. Lett., 107, 171603, (2011)
[48] Hohm, O.; Kwak, SK; Zwiebach, B., Double field theory of type II strings, JHEP, 09, 013, (2011) · Zbl 1301.81219
[49] Jeon, I.; Lee, K.; Park, J-H, Incorporation of fermions into double field theory, JHEP, 11, 025, (2011) · Zbl 1306.81160
[50] Hohm, O.; Zwiebach, B., On the Riemann tensor in double field theory, JHEP, 05, 126, (2012) · Zbl 1348.83080
[51] Hohm, O.; Kwak, SK, N = 1 supersymmetric double field theory, JHEP, 03, 080, (2012) · Zbl 1309.81222
[52] I. Jeon, K. Lee and J.-H. Park, Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity, Phys. Rev.D 85 (2012) 081501 [Erratum ibid.D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].
[53] Jeon, I.; Lee, K.; Park, J-H, Ramond-Ramond cohomology and O(D, D) T-duality, JHEP, 09, 079, (2012) · Zbl 1397.81261
[54] Jeon, I.; Lee, K.; Park, J-H; Suh, Y., Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory, Phys. Lett., B 723, 245, (2013) · Zbl 1311.83062
[55] Zwiebach, B., Double field theory, T-duality and Courant brackets, Lect. Notes Phys., 851, 265, (2012) · Zbl 1292.81122
[56] Aldazabal, G.; Marques, D.; Núñez, C., Double field theory: A pedagogical review, Class. Quant. Grav., 30, 163001, (2013) · Zbl 1273.83001
[57] Berman, DS; Thompson, DC, Duality symmetric string and M-theory, Phys. Rept., 566, 1, (2014)
[58] Hohm, O.; Lüst, D.; Zwiebach, B., The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys., 61, 926, (2013) · Zbl 1338.81328
[59] Baguet, A.; Magro, M.; Samtleben, H., Generalized IIB supergravity from exceptional field theory, JHEP, 03, 100, (2017) · Zbl 1377.83132
[60] Hull, CM; Townsend, PK, Finiteness and conformal invariance in nonlinear σ models, Nucl. Phys., B 274, 349, (1986)
[61] Tseytlin, AA, Conformal anomaly in two-dimensional σ-model on curved background and strings, Phys. Lett., B 178, 34, (1986)
[62] Shore, GM, A local renormalization group equation, diffeomorphisms and conformal invariance in σ models, Nucl. Phys., B 286, 349, (1987)
[63] A.A. Tseytlin, σ Model Weyl Invariance Conditions and String Equations of Motion, Nucl. Phys.B 294 (1987) 383 [INSPIRE].
[64] Lee, K., Towards weakly constrained double field theory, Nucl. Phys., B 909, 429, (2016) · Zbl 1342.81243
[65] Ma, C-T; Pezzella, F., Supergravity with doubled spacetime structure, Phys. Rev., D 95, 066016, (2017)
[66] Park, J-H; Rey, S-J; Rim, W.; Sakatani, Y., O(D, D) covariant Noether currents and global charges in double field theory, JHEP, 11, 131, (2015) · Zbl 1388.83688
[67] Kwak, SK, Invariances and equations of motion in double field theory, JHEP, 10, 047, (2010) · Zbl 1291.83040
[68] Callan, CG; Martinec, EJ; Perry, MJ; Friedan, D., Strings in background fields, Nucl. Phys., B 262, 593, (1985)
[69] Tseytlin, AA, Duality symmetric formulation of string world sheet dynamics, Phys. Lett., B 242, 163, (1990)
[70] Tseytlin, AA, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys., B 350, 395, (1991)
[71] Berman, DS; Copland, NB; Thompson, DC, Background field equations for the duality symmetric string, Nucl. Phys., B 791, 175, (2008) · Zbl 1225.81111
[72] Berman, DS; Thompson, DC, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett., B 662, 279, (2008) · Zbl 1282.81140
[73] Copland, NB, Connecting T-duality invariant theories, Nucl. Phys., B 854, 575, (2012) · Zbl 1229.81229
[74] Copland, NB, A double σ-model for double field theory, JHEP, 04, 044, (2012) · Zbl 1348.81363
[75] Blair, CDA, Conserved currents of double field theory, JHEP, 04, 180, (2016) · Zbl 1388.83748
[76] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[77] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[78] V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev.D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
[79] Arvanitakis, AS; Blair, CDA, Black hole thermodynamics, stringy dualities and double field theory, Class. Quant. Grav., 34, 055001, (2017) · Zbl 1368.83037
[80] West, PC, E_{11} and M-theory, Class. Quant. Grav., 18, 4443, (2001) · Zbl 0992.83079
[81] West, PC, E_{11}, SL(32) and central charges, Phys. Lett., B 575, 333, (2003) · Zbl 1031.22010
[82] West, PC, The IIA, IIB and eleven-dimensional theories and their common E_{11} origin, Nucl. Phys., B 693, 76, (2004) · Zbl 1151.81379
[83] Hull, CM, Generalised geometry for M-theory, JHEP, 07, 079, (2007)
[84] Pires Pacheco, P.; Waldram, D., M-theory, exceptional generalised geometry and superpotentials, JHEP, 09, 123, (2008) · Zbl 1245.83070
[85] Hillmann, C., Generalized E(7(7)) coset dynamics and D = 11 supergravity, JHEP, 03, 135, (2009)
[86] Berman, DS; Perry, MJ, Generalized geometry and M-theory, JHEP, 06, 074, (2011) · Zbl 1298.81244
[87] Berman, DS; Godazgar, H.; Perry, MJ, SO(5,5) duality in M-theory and generalized geometry, Phys. Lett., B 700, 65, (2011)
[88] Berman, DS; Godazgar, H.; Godazgar, M.; Perry, MJ, The local symmetries of M-theory and their formulation in generalised geometry, JHEP, 01, 012, (2012) · Zbl 1306.81196
[89] Berman, DS; Godazgar, H.; Perry, MJ; West, P., Duality invariant actions and generalised geometry, JHEP, 02, 108, (2012) · Zbl 1309.81201
[90] Berman, DS; Cederwall, M.; Kleinschmidt, A.; Thompson, DC, The gauge structure of generalised diffeomorphisms, JHEP, 01, 064, (2013)
[91] J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP04 (2013) 147 [Erratum ibid.1311 (2013) 210] [arXiv:1302.1652] [INSPIRE].
[92] Aldazabal, G.; Graña, M.; Marqués, D.; Rosabal, JA, Extended geometry and gauged maximal supergravity, JHEP, 06, 046, (2013) · Zbl 1342.83439
[93] Hohm, O.; Samtleben, H., Exceptional form of D = 11 supergravity, Phys. Rev. Lett., 111, 231601, (2013)
[94] Hohm, O.; Samtleben, H., Exceptional field theory I: E_{6(6)} covariant form of M-theory and type IIB, Phys. Rev., D 89, 066016, (2014)
[95] O. Hohm and H. Samtleben, Exceptional field theory. II. E_{7(7)}, Phys. Rev.D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
[96] Godazgar, H.; Godazgar, M.; Hohm, O.; Nicolai, H.; Samtleben, H., Supersymmetric E_{7(7)} exceptional field theory, JHEP, 09, 044, (2014) · Zbl 1333.81172
[97] O. Hohm and H. Samtleben, Exceptional field theory. III. E_{8(8)}, Phys. Rev.D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE]. · Zbl 1388.83825
[98] Musaev, E.; Samtleben, H., Fermions and supersymmetry in E_{6(6)} exceptional field theory, JHEP, 03, 027, (2015) · Zbl 1388.81155
[99] Hohm, O.; Wang, Y-N, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP, 04, 050, (2015)
[100] Abzalov, A.; Bakhmatov, I.; Musaev, ET, Exceptional field theory: SO(5, 5), JHEP, 06, 088, (2015)
[101] Musaev, ET, Exceptional field theory: SL(5), JHEP, 02, 012, (2016) · Zbl 1388.83867
[102] Berman, DS; Blair, CDA; Malek, E.; Rudolph, FJ, An action for F-theory: SL(2)\(ℝ\)\^{}{+} exceptional field theory, Class. Quant. Grav., 33, 195009, (2016) · Zbl 1349.83061
[103] Ciceri, F.; Guarino, A.; Inverso, G., The exceptional story of massive IIA supergravity, JHEP, 08, 154, (2016) · Zbl 1390.83387
[104] Baguet, A.; Samtleben, H., E_{8(8)} exceptional field theory: geometry, fermions and supersymmetry, JHEP, 09, 168, (2016) · Zbl 1390.83367
[105] Coimbra, A.; Strickland-Constable, C.; Waldram, D., Supergravity as generalised geometry II: \(E\)_{\(d\)(\(d\))} × \(ℝ\)\^{}{+} and M-theory, JHEP, 03, 019, (2014) · Zbl 1333.83220
[106] G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of Double Field Theory, JHEP11 (2011) 052 [Erratum ibid.1111 (2011) 109] [arXiv:1109.0290] [INSPIRE]. · Zbl 1306.81178
[107] Geissbuhler, D., Double field theory and N = 4 gauged supergravity, JHEP, 11, 116, (2011) · Zbl 1306.81227
[108] Graña, M.; Marques, D., Gauged double field theory, JHEP, 04, 020, (2012) · Zbl 1348.81368
[109] Hohm, O.; Samtleben, H., Consistent Kaluza-Klein truncations via exceptional field theory, JHEP, 01, 131, (2015) · Zbl 1388.83825
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.