zbMATH — the first resource for mathematics

Effective field theory for magnetic compactifications. (English) Zbl 1378.83081
Summary: Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for \( \mathcal{N} =1 \) supersymmetric abelian and non-abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

83E30 String and superstring theories in gravitational theory
81T10 Model quantum field theories
81R40 Symmetry breaking in quantum theory
81T60 Supersymmetric field theories in quantum mechanics
Full Text: DOI
[1] Angelantonj, C.; Sagnotti, A., Open strings, Phys. Rept., 371, 1, (2002) · Zbl 0999.83056
[2] Douglas, MR; Kachru, S., Flux compactification, Rev. Mod. Phys., 79, 733, (2007) · Zbl 1205.81011
[3] Blumenhagen, R.; Körs, B.; Lüst, D.; Stieberger, S., Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept., 445, 1, (2007)
[4] Witten, E., some properties of O(32) superstrings, Phys. Lett., 149B, 351, (1984)
[5] C. Bachas, A way to break supersymmetry, hep-th/9503030 [INSPIRE].
[6] Braun, AP; Hebecker, A.; Trapletti, M., flux stabilization in 6 dimensions: D-terms and loop corrections, JHEP, 02, 015, (2007)
[7] Buchmüller, W.; Dierigl, M.; Ruehle, F.; Schweizer, J., De Sitter vacua from an anomalous gauge symmetry, Phys. Rev. Lett., 116, 221303, (2016)
[8] Buchmüller, W.; Dierigl, M.; Ruehle, F.; Schweizer, J., De Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications, Phys. Rev., D 94, 025025, (2016)
[9] Marcus, N.; Sagnotti, A.; Siegel, W., Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys., B 224, 159, (1983)
[10] Arkani-Hamed, N.; Gregoire, T.; Wacker, JG, higher dimensional supersymmetry in 4D superspace, JHEP, 03, 055, (2002)
[11] J. Alfaro, A. Broncano, M.B. Gavela, S. Rigolin and M. Salvatori, Phenomenology of symmetry breaking from extra dimensions, JHEP01 (2007) 005 [hep-ph/0606070] [INSPIRE].
[12] Abe, H.; Kobayashi, T.; Ohki, H.; Sumita, K., superfield description of 10D SYM theory with magnetized extra dimensions, Nucl. Phys., B 863, 1, (2012) · Zbl 1246.81347
[13] Abe, T-h; Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M., operator analysis of physical states on magnetized T\^{}{2}/Z_{\(N\)}orbifolds, Nucl. Phys., B 890, 442, (2014) · Zbl 1326.81255
[14] Cremades, D.; Ibáñez, LE; Marchesano, F., Computing Yukawa couplings from magnetized extra dimensions, JHEP, 05, 079, (2004)
[15] Hamada, Y.; Kobayashi, T., Massive modes in magnetized brane models, Prog. Theor. Phys., 128, 903, (2012)
[16] Angelantonj, C.; Antoniadis, I.; Dudas, E.; Sagnotti, A., Type I strings on magnetized orbifolds and brane transmutation, Phys. Lett., B 489, 223, (2000) · Zbl 1031.81579
[17] Dudas, E.; Timirgaziu, C., Internal magnetic fields and supersymmetry in orientifolds, Nucl. Phys., B 716, 65, (2005) · Zbl 1207.81114
[18] Berkooz, M.; Douglas, MR; Leigh, RG, Branes intersecting at angles, Nucl. Phys., B 480, 265, (1996) · Zbl 0925.81211
[19] G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP02 (2001) 047 [hep-ph/0011132] [INSPIRE]. · Zbl 1031.81579
[20] Anastasopoulos, P.; Antoniadis, I.; Benakli, K.; Goodsell, MD; Vichi, A., One-loop adjoint masses for non-supersymmetric intersecting branes, JHEP, 08, 120, (2011) · Zbl 1298.81230
[21] Blumenhagen, R.; Görlich, L.; Körs, B.; Lüst, D., Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP, 10, 006, (2000) · Zbl 0965.81113
[22] Dudas, E.; Pradisi, G.; Nicolosi, M.; Sagnotti, A., On tadpoles and vacuum redefinitions in string theory, Nucl. Phys., B 708, 3, (2005) · Zbl 1160.81443
[23] N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239] [INSPIRE]. · Zbl 0969.81657
[24] Antoniadis, I.; Benakli, K.; Quirós, M., Finite Higgs mass without supersymmetry, New J. Phys., 3, 20, (2001) · Zbl 0992.81088
[25] T. Asaka, W. Buchmüller and L. Covi, Gauge unification in six-dimensions, Phys. Lett.B 523 (2001) 199 [hep-ph/0108021] [INSPIRE].
[26] Buchmüller, W.; Dierigl, M.; Ruehle, F.; Schweizer, J., Chiral fermions and anomaly cancellation on orbifolds with Wilson lines and flux, Phys. Rev., D 92, 105031, (2015)
[27] Hashimoto, K.; Nagaoka, S., Recombination of intersecting D-branes by local tachyon condensation, JHEP, 06, 034, (2003)
[28] Sen, A., Tachyon dynamics in open string theory, Int. J. Mod. Phys., A 20, 5513, (2005) · Zbl 1075.81537
[29] H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev.D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE]. · Zbl 0992.81088
[30] D.M. Ghilencea and H.M. Lee, Higher derivative operators from transmission of supersymmetry breaking on S(1)/Z(2), JHEP09 (2005) 024 [hep-ph/0505187] [INSPIRE].
[31] D.M. Ghilencea and H.M. Lee, Higher derivative operators from Scherk-Schwarz supersymmetry breaking on\( {T}^2/{\mathbb{Z}}_2 \), JHEP12 (2005) 039 [hep-ph/0508221] [INSPIRE].
[32] Ghilencea, DM; Nilles, HP; Stieberger, S., Divergences in Kaluza-Klein models and their string regularization, New J. Phys., 4, 15, (2002)
[33] Ghilencea, DM; Hoover, D.; Burgess, CP; Quevedo, F., Casimir energies for 6D supergravities compactified on T (2)/Z(\(N\) ) with Wilson lines, JHEP, 09, 050, (2005)
[34] L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012). · Zbl 1260.81001
[35] Abe, H.; Choi, K-S; Kobayashi, T.; Ohki, H., Magnetic flux, Wilson line and orbifold, Phys. Rev., D 80, 126006, (2009)
[36] T. Kobayashi, K. Nishiwaki and Y. Tatsuta, CP-violating phase on magnetized toroidal orbifolds, arXiv:1609.08608 [INSPIRE].
[37] Abe, H.; Kobayashi, T.; Sumita, K.; Tatsuta, Y., Supersymmetric models on magnetized orbifolds with flux-induced Fayet-Iliopoulos terms, Phys. Rev., D 95, 015005, (2017)
[38] Hosotani, Y., Dynamical mass generation by compact extra dimensions, Phys. Lett., B 126, 309, (1983)
[39] Hatanaka, H.; Inami, T.; Lim, CS, The gauge hierarchy problem and higher dimensional gauge theories, Mod. Phys. Lett., A 13, 2601, (1998)
[40] L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev.D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE]. · Zbl 1032.81033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.