×

zbMATH — the first resource for mathematics

Particle creation by black holes. (English) Zbl 1378.83040
Commun. Math. Phys. 43, 199-220 (1975); erratum: ibid. 46, No. 2 (1976).
Summary: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature \(h_{\kappa}/2\pi k \sim 10^{-6}(M_\odot/M)^\circ K\) where \(\kappa\) is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: \(S+1/4A\) never decreases where \(S\) is the entropy of matter outside black holes and \(A\) is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

MSC:
83C57 Black holes
83F05 Cosmology
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Isham, C.J.: Preprint (1973)
[2] Ashtekar, A., Geroch, R.P.: Quantum theory of gravity (preprint 1973)
[3] Penrose, R.: Phys. Rev. Lett.14, 57–59 (1965) · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[4] Hawking, S.W.: Proc. Roy. Soc. Lond.A 300, 187–20 (1967) · Zbl 0163.23903 · doi:10.1098/rspa.1967.0164
[5] Hawking, S.W., Penrose, R.: Proc. Roy. Soc. Lond.A 314, 529–548 (1970) · Zbl 0954.83012 · doi:10.1098/rspa.1970.0021
[6] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. London: Cambridge University Press 1973 · Zbl 0265.53054
[7] Hawking, S.W.: The event horizon. In: Black holes. Ed. C.M. DeWitt, B.S. DeWitt. New York: Gordon and Breach 1973
[8] Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. math. Phys.31, 161–170 (1973) · Zbl 1125.83309 · doi:10.1007/BF01645742
[9] Hawking, S.W.: Mon, Not. Roy. astr. Soc.152, 75–78 (1971) · doi:10.1093/mnras/152.1.75
[10] Carr, B.J., Hawking, S.W.: Monthly Notices Roy. Astron. Soc.168, 399–415 (1974) · doi:10.1093/mnras/168.2.399
[11] Hagedorn, R.: Astron. Astrophys.5, 184 (1970)
[12] Hawking, S.W.: Commun. math. Phys.25, 152–166 (1972) · doi:10.1007/BF01877517
[13] Carter, B.: Black hole equilibrium states. In: Black holes. Ed. C.M. DeWitt, B.S. DeWitt. New York: Gordon and Breach 1973
[14] Misner, C.W.: Bull. Amer. Phys. Soc.17, 472 (1972)
[15] Press, W.M., Teukolsky, S.A.: Nature238, 211 (1972) · doi:10.1038/238211a0
[16] Starobinsky, A.A.: Zh.E.T.F.64, 48 (1973)
[17] Starobinsky, A.A., Churilov, S.M.: Zh.E.T.F.65, 3 (1973)
[18] Bjorken, T.D., Drell, S.D.: Relativistic quantum mechanics. New York: McGraw Hill 1965 · Zbl 0184.54201
[19] Beckenstein, J.D.: Phys. Rev. D.7, 2333–2346 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[20] Beckenstein, J.D.: Phys. Rev. D.9,
[21] Penrose, R.: Phys. Rev. Lett.10, 66–68 (1963) · doi:10.1103/PhysRevLett.10.66
[22] Sachs, R.K.: Proc. Roy. Soc. Lond.A 270, 103 (1962) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[23] Eardley, D., Sachs, R.K.: J. Math. Phys.14 (1973)
[24] Schmidt, B.G.: Commun. Math. Phys.36, 73–90 (1974) · Zbl 0282.53042 · doi:10.1007/BF01646026
[25] Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Proc. Roy. Soc. Lond.A 269, 21 (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[26] Carter, B.: Commun. math. Phys.10, 280–310 (1968)
[27] Teukolsky, S.A.: Ap. J.185, 635–647 (1973) · doi:10.1086/152444
[28] Unruh, W.: Phys. Rev. Lett.31, 1265 (1973) · doi:10.1103/PhysRevLett.31.1265
[29] Unruh, W.: Phys. Rev. D.10, 3194–3205 (1974) · doi:10.1103/PhysRevD.10.3194
[30] Zeldovich, Ya.B., Starobinsky, A.A.: Zh. E.T.F.61, 2161 (1971), JETP34, 1159 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.