×

zbMATH — the first resource for mathematics

Multi-boundary entanglement in Chern-Simons theory and link invariants. (English) Zbl 1378.81061
Summary: We consider Chern-Simons theory for gauge group \(G\) at level \(k\) on 3-manifolds \(M_n\) with boundary consisting of \(n\) topologically linked tori. The Euclidean path integral on \(M_n\) defines a quantum state on the boundary, in the \(n\)-fold tensor product of the torus Hilbert space. We focus on the case where \(M_n\) is the link-complement of some \(n\)-component link inside the three-sphere \(S^3\). The entanglement entropies of the resulting states define framing-independent link invariants which are sensitive to the topology of the chosen link. For the abelian theory at level \(k \;(G = U(1)_{k})\) we give a general formula for the entanglement entropy associated to an arbitrary \((m | n - m)\) partition of a generic \( n\)-component link into sub-links. The formula involves the number of solutions to certain Diophantine equations with coefficients related to the Gauss linking numbers (mod \(k\)) between the two sublinks. This formula connects simple concepts in quantum information theory, knot theory, and number theory, and shows that entanglement entropy between sublinks vanishes if and only if they have zero Gauss linking (mod \(k\)). For \( G = SU(2)_{k}\), we study various two and three component links. We show that the 2-component Hopf link is maximally entangled, and hence analogous to a Bell pair, and that the Whitehead link, which has zero Gauss linking, nevertheless has entanglement entropy. Finally, we show that the Borromean rings have a “W-like” entanglement structure (i.e., tracing out one torus does not lead to a separable state), and give examples of other 3-component links which have “GHZ-like” entanglement (i.e., tracing out one torus does lead to a separable state).

MSC:
81S40 Path integrals in quantum mechanics
81T45 Topological field theories in quantum mechanics
58J28 Eta-invariants, Chern-Simons invariants
53Z05 Applications of differential geometry to physics
94A17 Measures of information, entropy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dur, W.; Vidal, G.; Cirac, JI, Three qubits can be entangled in two inequivalent ways, Phys. Rev., A 62, 062314, (2000)
[2] Balasubramanian, V.; Hayden, P.; Maloney, A.; Marolf, D.; Ross, SF, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav., 31, 185015, (2014) · Zbl 1300.81067
[3] Marolf, D.; Maxfield, H.; Peach, A.; Ross, SF, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav., 32, 215006, (2015) · Zbl 1329.83063
[4] D.R. Brill, Multi-black hole geometries in (2 + 1)-dimensional gravity, Phys. Rev.D 53 (1996) 4133 [gr-qc/9511022] [INSPIRE]. · Zbl 0876.57007
[5] S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav.15 (1998) 627 [gr-qc/9707036] [INSPIRE].
[6] D. Brill, Black holes and wormholes in (2 + 1)-dimensions, gr-qc/9904083 [INSPIRE]. · Zbl 0993.83018
[7] S. Aminneborg, I. Bengtsson and S. Holst, A spinning anti-de Sitter wormhole, Class. Quant. Grav.16 (1999) 363 [gr-qc/9805028] [INSPIRE]. · Zbl 0942.83047
[8] Krasnov, K., Holography and Riemann surfaces, Adv. Theor. Math. Phys., 4, 929, (2000) · Zbl 1011.81068
[9] K. Krasnov, Black hole thermodynamics and Riemann surfaces, Class. Quant. Grav.20 (2003) 2235 [gr-qc/0302073] [INSPIRE]. · Zbl 1029.83027
[10] Skenderis, K.; Rees, BC, holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys., 301, 583, (2011) · Zbl 1223.83037
[11] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110
[12] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 351, (1989) · Zbl 0667.57005
[13] Witten, E., Topological quantum field theory, Commun. Math. Phys., 117, 353, (1988) · Zbl 0656.53078
[14] Atiyah, M., Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math., 68, 175, (1989) · Zbl 0692.53053
[15] Mariño, M., Chern-Simons theory and topological strings, Rev. Mod. Phys., 77, 675, (2005) · Zbl 1205.81013
[16] Kitaev, A.; Preskill, J., Topological entanglement entropy, Phys. Rev. Lett., 96, 110404, (2006)
[17] Levin, M.; Wen, X-G, Detecting topological order in a ground state wave function, Phys. Rev. Lett., 96, 110405, (2006)
[18] Dong, S.; Fradkin, E.; Leigh, RG; Nowling, S., Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids, JHEP, 05, 016, (2008)
[19] Maloney, A.; Witten, E., Quantum gravity partition functions in three dimensions, JHEP, 02, 029, (2010) · Zbl 1270.83022
[20] D. Rolfsen, Knots and links, Mathematics lecture series, Publish or Perish, U.S.A., (1976). · Zbl 0726.57010
[21] Gepner, D.; Witten, E., String theory on group manifolds, Nucl. Phys., B 278, 493, (1986)
[22] L.K. Hua, Introduction to number theory, Springer-Verlag, Berlin Heidelberg Germany, (1982).
[23] Habiro, K., On the colored Jones polynomials of some simple links, Surikaisekikenkyusho Kokyuroku, 1172, 34, (2000) · Zbl 0969.57503
[24] K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent. Math.171 (2007) 1 [math/0605314]. · Zbl 1144.57006
[25] Gukov, S.; Nawata, S.; Saberi, I.; Stošić, M.; Sulkowski, P., Sequencing BPS spectra, JHEP, 03, 004, (2016) · Zbl 1388.81823
[26] Kaul, RK; Govindarajan, TR, Three-dimensional Chern-Simons theory as a theory of knots and links, Nucl. Phys., B 380, 293, (1992) · Zbl 0938.81553
[27] Kaul, RK, Chern-Simons theory, colored oriented braids and link invariants, Commun. Math. Phys., 162, 289, (1994) · Zbl 0832.57006
[28] R.K. Kaul, Chern-Simons theory, knot invariants, vertex models and three manifold invariants, in Frontiers of field theory, quantum gravity and strings. Proceedings, Workshop, Puri India, 12-21 December 1996, pg. 45 [hep-th/9804122] [INSPIRE]. · Zbl 1205.81013
[29] Verlinde, EP, fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys., B 300, 360, (1988) · Zbl 1180.81120
[30] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett.77 (1996) 1413 [quant-ph/9604005] [INSPIRE]. · Zbl 0947.81003
[31] Vidal, G.; Werner, RF, Computable measure of entanglement, Phys. Rev., A 65, 032314, (2002)
[32] Rangamani, M.; Rota, M., Entanglement structures in qubit systems, J. Phys., A 48, 385301, (2015) · Zbl 1327.81063
[33] Eliahou, S.; Kauffman, LH; Thistlethwaite, MB, Infinite families of links with trivial Jones polynomial, Topology, 42, 155, (2003) · Zbl 1013.57005
[34] P.K. Aravind, Borromean entanglement of the GHZ state, Springer Netherlands, Dordrecht The Netherlands, (1997), pg. 53. · Zbl 1006.81504
[35] Kauffman, LH; Jr, SJL, Quantum entanglement and topological entanglement, New J. Phys., 4, 73, (2002)
[36] A. Sugita, Borromean entanglement revisited, arXiv:0704.1712. · Zbl 1214.81046
[37] A.I. Solomon and C.L. Ho, Links and quantum entanglement, arXiv:1104.5144. · Zbl 1216.81035
[38] Kashaev, RM, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys., 39, 269, (1997) · Zbl 0876.57007
[39] Gukov, S., Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys., 255, 577, (2005) · Zbl 1115.57009
[40] Dimofte, T.; Gukov, S., Quantum field theory and the volume conjecture, Contemp. Math., 541, 41, (2011) · Zbl 1236.57001
[41] G. Salton, B. Swingle and M. Walter, Entanglement from topology in Chern-Simons theory, arXiv:1611.01516 [INSPIRE].
[42] Moore, GW; Seiberg, N., Classical and quantum conformal field theory, Commun. Math. Phys., 123, 177, (1989) · Zbl 0694.53074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.