×

Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media. (English) Zbl 1378.76115

Summary: Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical implicit pressure-explicit saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.

MSC:

76S05 Flows in porous media; filtration; seepage
76T10 Liquid-gas two-phase flows, bubbly flows
76M30 Variational methods applied to problems in fluid mechanics
35R45 Partial differential inequalities and systems of partial differential inequalities

Software:

MRST; PETSc; IPARS
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), Applied Science Pub.: Applied Science Pub. London
[3] Benson, S. J.; Munson, T. S., Flexible complementarity solvers for large-scale applications, Optim. Methods Softw., 21, 155-168 (2006) · Zbl 1181.90255
[4] Billups, S. C., Algorithms for Complementarity Problems and Generalized Equations (1995), Computer Sciences Department, University of Wisconsin-Madison: Computer Sciences Department, University of Wisconsin-Madison Madison, WI, Ph.D. thesis
[5] Blank, L.; Garcke, H.; Sarbu, L.; Styles, V., Primal-dual active set methods for Allen-Cahn variational inequalities with nonlocal constraints, Numer. Methods Partial Differ. Equ., 29, 999-1030 (2013) · Zbl 1272.65060
[6] Brune, P.; Knepley, M.; Smith, B.; Tu, X., Composing scalable nonlinear algebraic solvers, SIAM Rev., 57, 535-565 (2015) · Zbl 1336.65030
[7] Cai, X.-C.; Gropp, W. D.; Keyes, D. E.; Melvin, R. G.; Young, D. P., Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19, 246-265 (1998) · Zbl 0917.76035
[8] Cai, X.-C.; Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21, 792-797 (1999) · Zbl 0944.65031
[9] Chen, Z.; Huan, G.; Li, B., An improved IMPES method for two-phase flow in porous media, Transp. Porous Media, 54, 361-376 (2004)
[10] Chen, Z.; Huan, G.; Ma, Y., Computational Methods for Multiphase Flows in Porous Media (2006), SIAM: SIAM Philadelphia, PA · Zbl 1092.76001
[11] Coats, K. H., Reservoir simulation: state of art, J. Pet. Technol., 1633-1642 (Aug. 1982), SPE 10200
[12] Coats, K. H., A note on IMPES and some IMPES-based simulation models, (15th Symposium on Reservoir Simulation. 15th Symposium on Reservoir Simulation, Houston, TX (Feb. 1999)), SPE 49774
[13] Coats, K. H., IMPES stability: the CFL limit, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, Houston, TX (Mar. 2001)), SPE 85956
[14] Coats, K. H., IMPES stability: selection of stable time steps, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, Houston, TX (Feb. 2001)), SPE 84924
[15] Collins, D. A.; Nghiem, L. X.; Li, Y. K.; Grabenstetter, J. E., An efficient approach to adaptive implicit compositional simulation with an equation of state, SPE Reserv. Eng., 7, 259-264 (1992)
[16] Dawson, C. N.; Klíe, H.; Wheeler, M. F.; Woodward, C. S., A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-Krylov solver, Comput. Geosci., 1, 215-249 (1997) · Zbl 0941.76062
[17] De Luca, T.; Facchinei, F.; Kanzow, C., A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Program., 75, 407-439 (1996) · Zbl 0874.90185
[18] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1996), SIAM: SIAM Philadelphia · Zbl 0847.65038
[19] Eisenstat, S. C.; Walker, H. F., Globally convergent inexact Newton method, SIAM J. Optim., 4, 393-422 (1994) · Zbl 0814.65049
[20] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 16-32 (1996) · Zbl 0845.65021
[21] Ekeland, I.; Témam, R., Convex Analysis and Variational Problems (1999), SIAM: SIAM Philadelphia, PA · Zbl 0939.49002
[22] Facchinei, F.; Soares, J., A new merit function for nonlinear complementarity problems and a related algorithm, SIAM J. Optim., 7, 225-247 (1997) · Zbl 0873.90096
[23] Fagin, R. G.; Stewart, C. H., A new approach to the two-dimensional multiphase reservoir simulator, SPE J. (1966), SPE 1188
[24] Fischer, A., A special Newton-type optimization method, Optimization, 24, 269-284 (1992) · Zbl 0814.65063
[25] Forsyth, P. A., Adaptive implicit criteria for two-phase flow with gravity and capillary pressure, SIAM J. Sci. Stat. Comput., 10, 227-252 (1989) · Zbl 0667.76138
[26] Ginting, V.; Lin, G.; Liu, J., On application of the weak Galerkin finite element method to a two-phase model for subsurface flow, J. Sci. Comput., 66, 225-239 (2016) · Zbl 1381.76168
[27] Glowinski, R., Numerical Methods for Nonlinear Variational Problems (2008), Springer-Verlag: Springer-Verlag Berlin · Zbl 1139.65050
[28] Harker, P. T.; Pang, J.-S., Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Program., 48, 161-220 (1990) · Zbl 0734.90098
[29] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 865-888 (2003) · Zbl 1080.90074
[30] Hoteit, H.; Firoozabadi, A., Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures, Adv. Water Resour., 31, 56-73 (2008)
[31] Hwang, F.-N.; Lin, H.-L.; Cai, X.-C., Two-level nonlinear elimination based preconditioners for inexact Newton methods with application in shocked duct flow calculation, Electron. Trans. Numer. Anal., 37, 239-251 (2010) · Zbl 1205.65180
[32] Hwang, F.-N.; Su, Y.-C.; Cai, X.-C., A parallel adaptive nonlinear elimination preconditioned inexact Newton method for transonic full potential flow problems, Comput. Fluids, 110, 96-107 (2015) · Zbl 1390.76271
[33] Jiang, H.; Qi, L., A new nonsmooth equations approach to nonlinear complementarity problems, SIAM J. Control Optim., 35, 178-193 (1997) · Zbl 0872.90097
[34] Kanzow, C., Inexact semismooth Newton methods for large-scale complementarity problems, Optim. Methods Softw., 19, 309-325 (2004) · Zbl 1141.90558
[35] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[36] Kou, J.; Sun, S., A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation, Comput. Fluids, 39, 1293-1931 (2010) · Zbl 1245.76147
[37] Kou, J.; Sun, S., Convergence of discontinuous Galerkin methods for incompressible two-phase flow in heterogeneous media, SIAM J. Numer. Anal., 51, 3280-3306 (2013) · Zbl 1282.76124
[38] Lacroix, S.; Vassilevski, Y. V.; Wheeler, J. A.; Wheeler, M. F., Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput., 25, 905-926 (2003) · Zbl 1163.65310
[39] Lanzkron, P. J.; Rose, D. J.; Wilkes, J. T., An analysis of approximate nonlinear elimination, SIAM J. Sci. Comput., 17, 538-559 (1996) · Zbl 0855.65054
[40] Lie, K.; Krogstad, S.; Ligaarden, I.; Natvig, J.; Nilsen, H.; Skaflestad, B., Open-source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 297-322 (2012) · Zbl 1348.86002
[41] Liu, L.; Keyes, D. E., Field-split preconditioned inexact Newton algorithms, SIAM J. Sci. Comput., 37, A1388-A1409 (2015) · Zbl 1328.65122
[42] Lu, B., Iteratively Coupled Reservoir Simulation for Multiphase Flow in Porous Media (2008), The University of Texas at Austin, Ph.D. dissertation
[43] Lu, B.; Wheeler, M. F., Iterative coupling reservoir simulation on high performance computers, Pet. Sci., 6, 43-50 (2009)
[44] Monteagudo, J. E.P.; Firoozabadi, A., Comparison of fully implicit and IMPES formulations for simulation of water injection in fractured and unfractured media, Int. J. Numer. Methods Eng., 69, 698-728 (2007) · Zbl 1194.76160
[45] Mulder, W. A.; Van Leer, B., Experiments with implicit upwind methods for the Euler equations, J. Comput. Phys., 59, 232-246 (1985) · Zbl 0584.76014
[46] Munson, T. S.; Facchinei, F.; Ferris, M. C.; Fischer, A.; Kanzow, C., The semi-smooth algorithm for large scale complementarity problems, INFORMS J. Comput., 13, 294-311 (2001) · Zbl 1238.90123
[47] Qi, L., Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 18, 227-244 (1993) · Zbl 0776.65037
[48] Rodrigues, J. F., Obstacle Problems in Mathematical Physics (1987), North-Holland: North-Holland Amsterdam · Zbl 0606.73017
[49] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[50] Smith, B.; Bjørstad, P.; Gropp, W., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge University Press · Zbl 0857.65126
[51] Skogestad, J. O.; Keilegavlen, E.; Nordbotten, J. M., Domain decomposition strategies for nonlinear flow problems in porous media, J. Comput. Phys., 234, 439-451 (2013)
[52] Sun, S.; Keyes, D. E.; Liu, L., Fully implicit two-phase reservoir simulation with the additive Schwarz preconditioned inexact Newton method, (SPE Reservoir Characterization and Simulation Conference and Exhibition (2013), Society of Petroleum Engineers)
[53] Tan, T. B.; Kaiogerakis, N., A fully implicit, three-dimensional, three-phase simulator with automatic history-matching capability, (11th SPE Symposium on Reservoir Simulation. 11th SPE Symposium on Reservoir Simulation, Anaheim, CA (Feb. 1991)), SPE 21205
[54] Toselli, A.; Widlund, O., Domain Decomposition Methods - Algorithms and Theory (2005), Springer: Springer Berlin · Zbl 1069.65138
[55] Ulbrich, M., Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems, SIAM J. Optim., 11, 889-917 (2001) · Zbl 1010.90085
[56] Yang, H.; Cai, X.-C., Parallel two-grid semismooth Newton-Krylov-Schwarz method for nonlinear complementarity problems, J. Sci. Comput., 47, 258-280 (2011) · Zbl 1217.65116
[57] Yang, H.; Yang, C.; Cai, X.-C., Parallel domain decomposition methods with mixed order discretization for fully implicit solution of tracer transport problems on the cubed-sphere, J. Sci. Comput., 61, 258-280 (2014) · Zbl 1299.76165
[58] Young, L. C.; Stephenson, R. E., A generalized compositional approach for reservoir simulation, SPE J., 23, 727-742 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.