×

A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting. (English) Zbl 1378.74067

Summary: This work presents the first application of a non-intrusive reduced order method to model solid interacting with compressible fluid flows to simulate crack initiation and propagation. In the high fidelity model, the coupling process is achieved by introducing a source term into the momentum equation, which represents the effects of forces of the solid on the fluid. A combined single and smeared crack model with the Mohr-Coulomb failure criterion is used to simulate crack initiation and propagation. The non-intrusive reduced order method is then applied to compressible fluid and fractured solid coupled modelling where the computational cost involved in the full high fidelity simulation is high. The non-intrusive reduced order model (NIROM) developed here is constructed through proper orthogonal decomposition (POD) and a radial basis function (RBF) multi-dimensional interpolation method. The performance of the NIROM for solid interacting with compressible fluid flows, in the presence of fracture models, is illustrated by two complex test cases: an immersed wall in a fluid and a blasting test case. The numerical simulation results show that the NIROM is capable of capturing the details of compressible fluids and fractured solids while the CPU time is reduced by several orders of magnitude. In addition, the issue of whether or not to subtract the mean from the snapshots before applying POD is discussed in this paper. It is shown that solutions of the NIROM, without mean subtracted before constructing the POD basis, captured more details than the NIROM with mean subtracted from snapshots.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
74R99 Fracture and damage
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C.; Buchan, A.; Navon, I. M., Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons, Atmos. Environ., 96, 96-106 (2014)
[2] Fang, F.; Pain, C.; Navon, I. M.; Elsheikh, A.; Du, J.; Xiao, D., Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J. Comput. Phys., 234, 540-559 (2013) · Zbl 1284.65132
[3] Stefanescu, R.; Navon, I. M., POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, J. Comput. Phys., 237, 95-114 (2013) · Zbl 1286.76106
[4] Stefanescu, R.; Sandu, A.; Navon, I. M., Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, Int. J. Numer. Methods Fluids, 76, 8, 497-521 (2014)
[5] Daescu, D.; Navon, I. M., A dual-weighted approach to order reduction in 4D-Var data assimilation, Mon. Weather Rev., 136, 3, 1026-1041 (2008)
[6] Manzoni, A.; Salmoiraghi, F.; Heltai, L., Reduced basis isogeometric methods (RB-IGA) for the real-time simulation of potential flows about parametrized naca airfoils, Comput. Methods Appl. Mech. Eng., 284, 1147-1180 (2015) · Zbl 1423.76181
[7] Buchan, A.; Calloo, A.; Goffin, M.; Dargaville, S.; Fang, F.; Pain, C.; Navon, I. M., A POD reduced order model for resolving angular direction in neutron/photon transport problems, J. Comput. Phys., 296, 138-157 (2015) · Zbl 1352.82030
[8] Alotaibi, M.; Calo, V. M.; Efendiev, Y.; Galvis, J.; Ghommem, M., Global-local nonlinear model reduction for flows in heterogeneous porous media, Comput. Methods Appl. Mech. Eng., 292, 122-137 (2015) · Zbl 1423.76414
[9] Diez, M.; Campana, E. F.; Stern, F., Design-space dimensionality reduction in shape optimization by Karhunen-Loève expansion, Comput. Methods Appl. Mech. Eng., 283, 1525-1544 (2015) · Zbl 1423.74743
[10] Abgrall, R.; Amsallem, D.; Crisovan, R., Robust model reduction by \(l^1\)-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems, Adv. Model. Simul. Eng. Sci., 3, 1, 1-16 (2016)
[11] Schlegel, M.; Noack, B. R., On long-term boundedness of Galerkin models, J. Fluid Mech., 765, 2, 325-352 (2015) · Zbl 1336.76014
[12] Östh, J.; Noack, B. R.; Krajnović, S.; Barros, D.; Borée, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body, J. Fluid Mech., 47, 5, 518-544 (2014) · Zbl 1371.76085
[13] Franca, L. P.; Frey, S. L., Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 99, 2-3, 209-233 (1992) · Zbl 0765.76048
[14] Chaturantabut, S.; Sorensen, D., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[15] Carlberg, C. B.-M. K.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., 86, 155-181 (2011) · Zbl 1235.74351
[16] Chu, M. S.Y.; Hahn, J., State-preserving nonlinear model reduction procedure, Chem. Eng. Sci., 66, 3907-3913 (2011)
[17] Willcox, K.; Megretski, A., Model reduction for large-scale linear applications, (Proc. of 13th IFAC Symposium on System Identification. Proc. of 13th IFAC Symposium on System Identification, Rotterdam, Netherlands (2003)), 1431-1436
[18] Feriedoun Sabetghadam, A. J., \(α\) Regularization of the POD-Galerkin dynamical systems of the Kuramoto-Sivashinsky equation, Appl. Math. Comput., 218, 6012-6026 (2012) · Zbl 1246.65180
[19] Xiao, D.; Fang, F.; Du, J.; Pain, C.; Navon, I. M.; Buchan, A. G.; ElSheikh, A.; Hu, G., Non-linear Petrov-Galerkin methods for reduced order modelling of the Navier-Stokes equations using a mixed finite element pair, Comput. Methods Appl. Mech. Eng., 255, 147-157 (2013) · Zbl 1297.76107
[20] Barrault, M.; Maday, Y.; Nguyen, N.; Patera, A., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, 339, 667-672 (2004) · Zbl 1061.65118
[21] Du, J.; Fang, F.; Pain, C. C.; Navon, I. M.; Zhu, J.; Ham, D. A., POD reduced-order unstructured mesh modeling applied to 2d and 3d fluid flow, Comput. Math. Appl., 65, 3, 362-379 (2013) · Zbl 1319.76026
[22] Fang, F.; Pain, C.; Navon, I. M.; Piggott, M.; Gorman, G.; Allison, P.; Goddard, A., Reduced-order modelling of an adaptive mesh ocean model, Int. J. Numer. Methods Fluids, 59, 8, 827-851 (2009) · Zbl 1155.86004
[23] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C.; Navon, I. M.; Du, J.; Hu, G., Non-linear model reduction for the Navier-Stokes equations using Residual DEIM method, J. Comput. Phys., 263, 1-18 (2014) · Zbl 1349.76288
[24] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[25] Barone, M. F.; Kalashnikova, I.; Brake, M. R.; Segalman, D. J., Reduced Order Modeling of Fluid/Structure Interaction (2009), 7189
[26] Kalashnikova, I.; Barone, M.; Brake, M., A stable Galerkin reduced order model for coupled fluid-structure interaction problems, Int. J. Numer. Methods Eng., 95, 2, 121-144 (2013) · Zbl 1352.74374
[27] Lieu, T.; Farhat, C.; Lesoinne, M., Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Eng., 195, 41, 5730-5742 (2006) · Zbl 1124.76042
[28] Lieu, T.; Farhat, C.; Lesoinne, M., POD-Based Aeroelastic Analysis of a Complete F-16 Configuration: ROM Adaptation and Demonstration, 2005 (2005), AIAA Paper 2295
[29] Liberge, E.; Pomarede, M.; Hamdouni, A., Reduced-order modelling by POD-multiphase approach for fluid-structure interaction, Eur. J. Comput. Mech., 19, 1-3, 41-52 (2010) · Zbl 1426.74129
[30] Forti, D.; Rozza, G., Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid-structure interaction coupling problems, Int. J. Comput. Fluid Dyn., 28, 3-4, 158-169 (2014) · Zbl 07512420
[31] Balajewicz, M.; Amsallem, D.; Farhat, C., Projection-based model reduction for contact problems, Int. J. Numer. Methods Eng., 106, 8, 644-663 (2016) · Zbl 1352.74196
[32] Han, C., Blackbox Stencil Interpolation Method for Model Reduction (2012), Massachusetts Institute of Technology, Master’s thesis
[33] Walton, S.; Hassan, O.; Morgan, K., Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions, Appl. Math. Model., 37, 20, 8930-8945 (2013) · Zbl 1426.76576
[34] Xiao, D.; Fang, F.; Buchan, A.; Pain, C.; Navon, I. M.; Muggeridge, A., Non-intrusive reduced order modelling of the Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 293, 522-541 (2015) · Zbl 1423.76287
[35] Audouze, C.; De Vuyst, F.; Nair, P. B., Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations, Numer. Methods Partial Differ. Equ., 29, 5, 1587-1628 (2013) · Zbl 1274.65270
[36] Audouze, C.; De Vuyst, F.; Nair, P., Reduced-order modeling of parameterized PDEs using time-space-parameter principal component analysis, Int. J. Numer. Methods Eng., 80, 8, 1025-1057 (2009) · Zbl 1176.76059
[37] Xiao, D.; Fang, F.; Pain, C.; Hu, G., Non-intrusive reduced order modelling of the Navier-Stokes equations based on RBF interpolation, Int. J. Numer. Methods Fluids, 79, 11, 580-595 (2015) · Zbl 1455.76099
[38] Xiao, D.; Lin, Z.; Fang, F.; Pain, C.; Navon, I. M.; Salinas, P.; Muggeridge, A., Non-intrusive reduced order modeling for multiphase porous media flows using Smolyak sparse grids, Int. J. Numer. Methods Fluids (2016)
[39] Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C.; Navon, I. M., Non-intrusive reduced order modelling of fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 303, 35-54 (2016) · Zbl 1425.74167
[40] Ballarin, F.; Rozza, G., POD-Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems, Int. J. Numer. Methods Fluids, 82, 12, 1010-1034 (2016)
[41] Chen, H.; Reuss, D. L.; Sick, V., On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows, Meas. Sci. Technol., 23, 8, Article 085302 pp. (2012)
[42] Müller, M., On the POD Method: An Abstract Investigation with Applications to Reduced-Order Modeling and Suboptimal Control (2008), Georg-August-Universität zu Göttingen, PhD thesis
[43] Wang, H.; Chessa, J.; Liu, W. K.; Belytschko, T., The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, compressibility and thin members, Int. J. Numer. Methods Eng., 74, 1, 32-55 (2008) · Zbl 1159.74437
[44] Yang, P.; Xiang, J.; Chen, M.; Fang, F.; Pavlidis, D.; Latham, J.; Pain, C., The immersed-body gas-solid interaction model for blast analysis in fractured solid media, Int. J. Rock Mech. Min. Sci. (2016), revision
[45] Pain, C.; Piggott, M.; Goddard, A.; Fang, F.; Gorman, G.; Marshall, D.; Eaton, M.; Power, P.; De Oliveira, C., Three-dimensional unstructured mesh ocean modelling, Ocean Model., 10, 1, 5-33 (2005)
[46] Munjiza, A., The Combined Finite-Discrete Element Method (2004), John Wiley & Sons, Ltd · Zbl 1194.74452
[47] AMCG, Fluidity manual v4.1.12. figshare, 1-329 (2015), I.C. London
[48] Anderson, J. D.; Wendt, J., Computational Fluid Dynamics, vol. 206 (1995), Springer
[49] Guo, L.; Latham, J.-P.; Xiang, J., Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite-discrete element method, Comput. Struct., 146, 117-142 (2015)
[50] Viré, A.; Xiang, J.; Pain, C., An immersed-shell method for modelling fluid-structure interactions, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 373, 2035, Article 20140085 pp. (2015)
[51] Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C., Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method, J. Comput. Phys., 321, 571-592 (2016) · Zbl 1349.76291
[52] Munjiza, A.; Andrews, K.; White, J., Combined single and smeared crack model in combined finite-discrete element analysis, Int. J. Numer. Methods Eng., 44, 1, 41-57 (1999) · Zbl 0936.74071
[53] Bourguet, R.; Braza, M.; Dervieux, A., Reduced-order modeling for unsteady transonic flows around an airfoil, Phys. Fluids, 19, 11, 111701 (2007) · Zbl 1182.76077
[54] Epureanuj, B. I.; Heeg, J., Reduced Order Models in Unsteady Aerodynamics (1999)
[55] Dalle, D. J.; Fotia, M. L.; Driscoll, J. F., Reduced-order modeling of two-dimensional supersonic flows with applications to scramjet inlets, J. Propuls. Power, 26, 3, 545-555 (2010)
[56] Carlberg, K.; Cortial, J.; Amsallem, D.; Zahr, M.; Farhat, C., The gnat nonlinear model reduction method and its application to fluid dynamics problems, (6th AIAA Theoretical Fluid Mechanics Conference. 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, Hawaii, June, vol. 2730 (2011)), 2011-3112
[57] Lucia, D. J., Reduced Order Modeling for High Speed Flows with Moving Shocks (2001), Tech. rep., DTIC Document
[58] Marley, C. D.; Duraisamy, K.; Driscoll, J. F., Reduced order modeling of compressible flows with unsteady normal shock motion, (51st AIAA/SAE/ASEE Joint Propulsion Conference (2015)), 3988
[59] White, T. R., A Clustering Algorithm for Reduced Order Modeling of Shock Waves (2015), Department of Mechanical Engineering, Stanford University, Technical report
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.