×

zbMATH — the first resource for mathematics

Generalized IIB supergravity from exceptional field theory. (English) Zbl 1377.83132
Summary: The background underlying the \(\eta\)-deformed \(AdS_{5} {\times} S^5\) sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.

MSC:
83E50 Supergravity
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C15 Exact solutions to problems in general relativity and gravitational theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Maldacena, JM, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113, (1999) · Zbl 0969.81047
[2] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett., B 428, 105, (1998) · Zbl 1355.81126
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, (1998) · Zbl 0914.53048
[4] Beisert, N.; etal., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3, (2012) · Zbl 1268.81126
[5] Metsaev, RR; Tseytlin, AA, Type IIB superstring action in ads_{5} × S\^{}{5} background, Nucl. Phys., B 533, 109, (1998) · Zbl 0956.81063
[6] Bena, I.; Polchinski, J.; Roiban, R., Hidden symmetries of the ads_{5} × S\^{}{5} superstring, Phys. Rev., D 69, 046002, (2004)
[7] Arutyunov, G.; Frolov, S., Foundations of the ads_{5} × S\^{}{5} superstring. part I, J. Phys., A 42, 254003, (2009) · Zbl 1167.81028
[8] Delduc, F.; Magro, M.; Vicedo, B., An integrable deformation of the ads_{5} × S\^{}{5} superstring action, Phys. Rev. Lett., 112, 051601, (2014)
[9] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., Jordanian deformations of the ads_{5} × S\^{}{5} superstring, JHEP, 04, 153, (2014)
[10] Hollowood, TJ; Miramontes, JL; Schmidtt, DM, An integrable deformation of the ads_{5} × S\^{}{5} superstring, J. Phys., A 47, 495402, (2014) · Zbl 1305.81120
[11] Vicedo, B., Deformed integrable σ-models, classical R-matrices and classical exchange algebra on drinfel’d doubles, J. Phys., A 48, 355203, (2015) · Zbl 1422.37037
[12] Hoare, B.; Tseytlin, AA, On integrable deformations of superstring σ-models related to ads_{n} × S\^{}{n} supercosets, Nucl. Phys., 8 97, 448, (2015) · Zbl 1329.81317
[13] Sfetsos, K.; Siampos, K.; Thompson, DC, Generalised integrable λ- and η-deformations and their relation, Nucl. Phys., B 899, 489, (2015) · Zbl 1331.81248
[14] C. Klimčík, η and λ deformations as E-models, Nucl. Phys.B 900 (2015) 259 [arXiv:1508.05832] [INSPIRE].
[15] Klimčík, C.; Ševera, P., Dual non-abelian duality and the Drinfeld double, Phys. Lett., B 351, 455, (1995)
[16] Klimčík, C.; Ševera, P., Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett., B 372, 65, (1996) · Zbl 1037.81576
[17] Klimčík, C., Yang-Baxter σ-models and ds/AdS T duality, JHEP, 12, 051, (2002)
[18] Klimčík, C., On integrability of the Yang-Baxter σ-model, J. Math. Phys., 50, 043508, (2009) · Zbl 1215.81099
[19] Delduc, F.; Magro, M.; Vicedo, B., On classical q-deformations of integrable σ-models, JHEP, 11, 192, (2013) · Zbl 1342.81182
[20] Sfetsos, K., Integrable interpolations: from exact CFTs to non-abelian T-duals, Nucl. Phys., B 880, 225, (2014) · Zbl 1284.81257
[21] Hollowood, TJ; Miramontes, JL; Schmidtt, DM, Integrable deformations of strings on symmetric spaces, JHEP, 11, 009, (2014) · Zbl 1333.81341
[22] R. Borsato, Integrable strings for AdS/CFT, Ph.D. Thesis, Imperial College, London U.K. (2015) [arXiv:1605.03173] [INSPIRE].
[23] Matsumoto, T.; Yoshida, K., Integrable deformations of the ads_{5} × S\^{}{5} superstring and the classical Yang-Baxter equation — towards the gravity/CYBE correspondence —, J. Phys. Conf. Ser., 563, 012020, (2014)
[24] Thompson, DC, Generalised T-duality and integrable deformations, Fortsch. Phys., 64, 349, (2016) · Zbl 1339.81083
[25] Borsato, R.; Wulff, L., Target space supergeometry of η and λ-deformed strings, JHEP, 10, 045, (2016) · Zbl 1390.81412
[26] L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE]. · Zbl 1390.83426
[27] Mikhailov, A., Cornering the unphysical vertex, JHEP, 11, 082, (2012)
[28] Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, AA, Scale invariance of the η-deformed ads_{5} × S\^{}{5} superstring, T-duality and modified type-II equations, Nucl. Phys., B 903, 262, (2016) · Zbl 1332.81167
[29] Borsato, R.; Tseytlin, AA; Wulff, L., Supergravity background of λ-deformed model for ads_{2} × S\^{}{2} supercoset, Nucl. Phys., B 905, 264, (2016) · Zbl 1332.81170
[30] Chervonyi, Y.; Lunin, O., Supergravity background of the λ-deformed ads_{3} × S\^{}{3} supercoset, Nucl. Phys., B 910, 685, (2016) · Zbl 1345.83040
[31] Chervonyi, Y.; Lunin, O., Generalized λ-deformations of ads_{p} × S\^{}{p}, Nucl. Phys., 913, 912, (2016) · Zbl 1349.81150
[32] Sfetsos, K.; Thompson, DC, Spacetimes for λ-deformations, JHEP, 12, 164, (2014)
[33] Demulder, S.; Sfetsos, K.; Thompson, DC, Integrable λ-deformations: squashing coset CFTs and ads_{5} × S\^{}{5}, JHEP, 07, 019, (2015) · Zbl 1388.83790
[34] Arutyunov, G.; Borsato, R.; Frolov, S., S-matrix for strings on η-deformed ads_{5} × S\^{}{5}, JHEP, 04, 002, (2014)
[35] Arutyunov, G.; Borsato, R.; Frolov, S., Puzzles of η-deformed ads_{5} × S\^{}{5}, JHEP, 12, 049, (2015) · Zbl 1388.83726
[36] H. Kyono and K. Yoshida, Supercoset construction of Yang-Baxter deformed AdS_{5} × \(S\)\^{}{5}backgrounds, PTEP2016 (2016) 083B03 [arXiv:1605.02519] [INSPIRE].
[37] Hoare, B.; Tongeren, SJ, Non-split and split deformations of ads_{5}, J. Phys., A 49, 484003, (2016) · Zbl 1354.81047
[38] Hoare, B.; Tongeren, SJ, On Jordanian deformations of ads_{5} and supergravity, J. Phys., A 49, 434006, (2016) · Zbl 1352.81050
[39] Orlando, D.; Reffert, S.; Sakamoto, J-i; Yoshida, K., Generalized type IIB supergravity equations and non-abelian classical r-matrices, J. Phys., A 49, 445403, (2016) · Zbl 1354.83054
[40] Hoare, B.; Tseytlin, AA, Type IIB supergravity solution for the T-dual of the η-deformed ads_{5} × S\^{}{5} superstring, JHEP, 10, 060, (2015) · Zbl 1388.83824
[41] Hohm, O.; Samtleben, H., Exceptional form of D = 11 supergravity, Phys. Rev. Lett., 111, 231601, (2013)
[42] Hohm, O.; Samtleben, H., Exceptional field theory I: E_{6(6)} covariant form of M-theory and type IIB, Phys. Rev., D 89, 066016, (2014)
[43] O. Hohm and H. Samtleben, Exceptional field theory. II. E_{7(7)}, Phys. Rev.D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
[44] A. Baguet, O. Hohm and H. Samtleben, \(E\)_{6(6)}exceptional field theory: Review and embedding of type IIB, PoS(CORFU2014)133 [arXiv:1506.01065] [INSPIRE].
[45] Y. Sakatani, S. Uehara and K. Yoshida, Generalized gravity from modified DFT, arXiv:1611.05856 [INSPIRE].
[46] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev., D 48, 2826, (1993)
[47] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009)
[48] Hohm, O.; Hull, C.; Zwiebach, B., Background independent action for double field theory, JHEP, 07, 016, (2010) · Zbl 1290.81069
[49] Hohm, O.; Hull, C.; Zwiebach, B., Generalized metric formulation of double field theory, JHEP, 08, 008, (2010) · Zbl 1291.81255
[50] E. Bergshoeff, T. de Wit, U. Gran, R. Linares and D. Roest, (Non-)Abelian gauged supergravities in nine-dimensions, JHEP10 (2002) 061 [hep-th/0209205] [INSPIRE]. · Zbl 1036.83026
[51] J.J. Fernandez-Melgarejo, T. Ortín and E. Torrente-Lujan, The general gaugings of maximal D = 9 supergravity, JHEP10(2011) 068[arXiv:1106.1760] [INSPIRE]. · Zbl 1303.81161
[52] Diffon, A.; Samtleben, H., Supergravities without an action: gauging the trombone, Nucl. Phys., B 811, 1, (2009) · Zbl 1194.83100
[53] Musaev, E.; Samtleben, H., Fermions and supersymmetry in E_{6(6)} exceptional field theory, JHEP, 03, 027, (2015) · Zbl 1388.81155
[54] Berman, DS; Perry, MJ, Generalized geometry and M-theory, JHEP, 06, 074, (2011) · Zbl 1298.81244
[55] Coimbra, A.; Strickland-Constable, C.; Waldram, D., \(E\)_{\(d\)(\(d\))} × \(ℝ\)\^{}{+} generalised geometry, connections and M-theory, JHEP, 02, 054, (2014) · Zbl 1333.83220
[56] Hohm, O.; Samtleben, H., Consistent Kaluza-Klein truncations via exceptional field theory, JHEP, 01, 131, (2015) · Zbl 1388.83825
[57] Ciceri, F.; Guarino, A.; Inverso, G., The exceptional story of massive IIA supergravity, JHEP, 08, 154, (2016) · Zbl 1390.83387
[58] Graña, M.; Marques, D., Gauged double field theory, JHEP, 04, 020, (2012) · Zbl 1348.81368
[59] Wit, B.; Samtleben, H.; Trigiante, M., The maximal D = 5 supergravities, Nucl. Phys., B 716, 215, (2005) · Zbl 1207.83073
[60] Berman, DS; Blair, CDA; Malek, E.; Rudolph, FJ, An action for F-theory: SL(2)\(ℝ\)\^{}{+} exceptional field theory, Class. Quant. Grav., 33, 195009, (2016) · Zbl 1349.83061
[61] Baguet, A.; Hohm, O.; Samtleben, H., Consistent type IIB reductions to maximal 5D supergravity, Phys. Rev., D 92, 065004, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.