zbMATH — the first resource for mathematics

An addendum to the Heisenberg-Euler effective action beyond one loop. (English) Zbl 1377.83032
Summary: We study the effective interactions of external electromagnetic fields induced by fluctuations of virtual particles in the vacuum of quantum electrodynamics. Our main focus is on these interactions at two-loop order. We discuss in detail the emergence of the renowned Heisenberg-Euler effective action from the underlying microscopic theory of quantum electrodynamics, emphasizing its distinction from a standard one-particle irre-ducible effective action. In our explicit calculations we limit ourselves to constant and slowly varying external fields, allowing us to adopt a locally constant field approximation. One of our main findings is that at two-loop order there is a finite one-particle reducible contribution to the Heisenberg-Euler effective action in constant fields, which was previously assumed to vanish. In addition to their conceptual significance, our results are relevant for high-precision probes of quantum vacuum nonlinearity in strong electromagnetic fields.

83C50 Electromagnetic fields in general relativity and gravitational theory
81V10 Electromagnetic interaction; quantum electrodynamics
Full Text: DOI
[1] H. Euler and B. Kockel, Über die Streuung von Licht an Licht nach der Diracschen Theorie, Naturwiss.23 (1935) 246 [INSPIRE]. · JFM 61.1563.05
[2] W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Z. Phys.98 (1936) 714 [physics/0605038] [INSPIRE]. · Zbl 0013.18503
[3] V. Weisskopf, Über die Elektrodynamik des Vakuums auf Grund der Quanthentheorie des Elektrons, Kong. Dans. Vid. Selsk. Mat.-fys. Medd.XIV (1936) 6. · JFM 62.1002.02
[4] Dittrich, W.; Reuter, M., Effective Lagrangians in quantum electrodynamics, Lect. Notes Phys., 220, 1, (1985)
[5] W. Dittrich and H. Gies, Probing the quantum vacuum. Perturbative effective action approach in quantum electrodynamics and its application, Springer Tracts Modern Physicis volume 166, Springer, Germany (2000).
[6] Marklund, M.; Lundin, J., Quantum vacuum experiments using high intensity lasers, Eur. Phys. J., D 55, 319, (2009)
[7] Dunne, GV, New strong-field QED effects at ELI: nonperturbative vacuum pair production, Eur. Phys. J., D 55, 327, (2009)
[8] Heinzl, T.; Ilderton, A., Exploring high-intensity QED at ELI, Eur. Phys. J., D 55, 359, (2009)
[9] Piazza, A.; Muller, C.; Hatsagortsyan, KZ; Keitel, CH, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys., 84, 1177, (2012)
[10] G.V. Dunne, The Heisenberg-Euler effective action: 75 years on, Int. J. Mod. Phys.A 27 (2012) 1260004 [Int. J. Mod. Phys. Conf. Ser.14 (2012) 42] [arXiv:1202.1557] [INSPIRE]. · Zbl 1247.81595
[11] Battesti, R.; Rizzo, C., Magnetic and electric properties of quantum vacuum, Rept. Prog. Phys., 76, 016401, (2013)
[12] B. King and T. Heinzl, Measuring vacuum polarisation with high power lasers, High Power Laser Science and Engineering 4, Cambridge University Press, Cambridge U.K. (2016), arXiv:1510.08456 [INSPIRE].
[13] F. Karbstein, The quantum vacuum in electromagnetic fields: from the Heisenberg-Euler effective action to vacuum birefringence, arXiv:1611.09883 [INSPIRE].
[14] Sauter, F., Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie diracs, Z. Phys., 69, 742, (1931) · JFM 57.1218.06
[15] Schwinger, JS, On gauge invariance and vacuum polarization, Phys. Rev., 82, 664, (1951) · Zbl 0043.42201
[16] J.S. Toll, The dispersion relation for light and its application to problems involving electron pairs, Ph.D. thesis, Princeton University, Princeton, U.S.A. (1952).
[17] Baier, R.; Breitenlohner, P., Photon propagation in external fields, Act. Phys. Austriaca, 25, 212, (1967)
[18] Baier, R.; Breitenlohner, P., The vacuum refraction index in the presence of external fields, Nuov. Cim., B 47, 117, (1967)
[19] Z. Bialynicka-Birula and I. Bialynicki-Birula, Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field, Phys. Rev.D 2 (1970) 2341 [INSPIRE].
[20] PVLAS collaboration, G. Cantatore, Recent results from the PVLAS experiment on the magnetized vacuum, Lect. Notes Phys.741 (2008) 157 [INSPIRE].
[21] PVLAS collaboration, E. Zavattini et al., New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum, Phys. Rev.D 77 (2008) 032006 [arXiv:0706.3419] [INSPIRE].
[22] Della Valle, F.; etal., Measurements of vacuum magnetic birefringence using permanent dipole magnets: the PVLAS experiment, New J. Phys., 15, 053026, (2013)
[23] Berceau, P.; Battesti, R.; Fouche, M.; Rizzo, C., The vacuum magnetic birefringence experiment: A test for quantum electrodynamics, Can. J. Phys., 89, 153, (2011)
[24] Berceau, P.; etal., Magnetic linear birefringence measurements using pulsed fields, Phys. Rev., A 85, 013837, (2012)
[25] Cadène, A.; Berceau, P.; Fouché, M.; Battesti, R.; Rizzo, C., Vacuum magnetic linear birefringence using pulsed fields: status of the BMV experiment, Eur. Phys. J., D 68, 16, (2014)
[26] G.L. Kotkin and V.G. Serbo, Variation in polarization of high-energy gamma quanta traversing a bunch of polarized laser photons, Phys. Lett.B 413 (1997) 122 [hep-ph/9611345] [INSPIRE].
[27] T. Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R. Sauerbrey and A. Wipf, On the observation of vacuum birefringence, Opt. Commun.267 (2006) 318 [hep-ph/0601076] [INSPIRE].
[28] A. Di Piazza, K.Z. Hatsagortsyan and C.H. Keitel, Light diffraction by a strong standing electromagnetic wave, Phys. Rev. Lett.97 (2006) 083603 [hep-ph/0602039] [INSPIRE].
[29] Dinu, V.; Heinzl, T.; Ilderton, A.; Marklund, M.; Torgrimsson, G., Vacuum refractive indices and helicity flip in strong-field QED, Phys. Rev., D 89, 125003, (2014)
[30] Dinu, V.; Heinzl, T.; Ilderton, A.; Marklund, M.; Torgrimsson, G., Photon polarization in light-by-light scattering: finite size effects, Phys. Rev., D 90, 045025, (2014)
[31] Ilderton, A.; Marklund, M., Prospects for studying vacuum polarisation using dipole and synchrotron radiation, J. Plasma Phys., 82, 655820201, (2016)
[32] King, B.; Elkina, N., Vacuum birefringence in high-energy laser-electron collisions, Phys. Rev., A 94, 062102, (2016)
[33] Schlenvoigt, HP; etal., Detecting vacuum birefringence with x-ray free electron lasers and high-power optical lasers: a feasibility study, Phys. Scripta, 91, 023010, (2016)
[34] Karbstein, F.; Gies, H.; Reuter, M.; Zepf, M., Vacuum birefringence in strong inhomogeneous electromagnetic fields, Phys. Rev., D 92, 071301, (2015)
[35] Karbstein, F.; Sundqvist, C., Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers, Phys. Rev., D 94, 013004, (2016)
[36] R.P. Mignani et al., Evidence for vacuum birefringence from the first optical polarimetry measurement of the isolated neutron star RX J1856.5-3754, Mon. Not. R. Astron. Soc.465 (2017) 492 [arXiv:1610.08323] [INSPIRE].
[37] E. Lundstrom et al., Using high-power lasers for detection of elastic photon-photon scattering, Phys. Rev. Lett.96 (2006) 083602 [hep-ph/0510076] [INSPIRE].
[38] J. Lundin et al., Detection of elastic photon-photon scattering through four-wave mixing using high power lasers, Phys. Rev.A 74 (2006) 043821 [hep-ph/0606136] [INSPIRE].
[39] Tommasini, D.; Michinel, H., Light by light diffraction in vacuum, Phys. Rev., A 82, 011803, (2010)
[40] King, B.; Keitel, CH, Photon-photon scattering in collisions of laser pulses, New J. Phys., 14, 103002, (2012)
[41] King, B.; Piazza, A.; Keitel, CH, A matterless double slit, Nature Photon., 4, 92, (2010)
[42] King, B.; Piazza, A.; Keitel, CH, Double-slit vacuum polarisation effects in ultra-intense laser fields, Phys. Rev., A 82, 032114, (2010)
[43] Hatsagortsyan, KZ; Kryuchkyan, GY, Bragg scattering of light in vacuum structured by strong periodic fields, Phys. Rev. Lett., 107, 053604, (2011)
[44] Sarazin, X.; etal., Refraction of light by light in vacuum, Eur. Phys. J., D 70, 13, (2016)
[45] Gies, H.; Karbstein, F.; Seegert, N., Quantum reflection as a new signature of quantum vacuum nonlinearity, New J. Phys., 15, 083002, (2013)
[46] Gies, H.; Karbstein, F.; Seegert, N., Quantum reflection of photons off spatio-temporal electromagnetic field inhomogeneities, New J. Phys., 17, 043060, (2015)
[47] V.P. Yakovlev, Incoherent electromagnetic wave scattering in a Coulomb field, Sov. Phys. JETP24 (1967) 411 [Zh. Eksp. Teor. Fiz.51 (1966) 619].
[48] Piazza, A.; Hatsagortsyan, KZ; Keitel, CH, Non-perturbative vacuum-polarization effects in proton-laser collisions, Phys. Rev. Lett., 100, 010403, (2008)
[49] Piazza, A.; Hatsagortsyan, KZ; Keitel, CH, Laser photon merging in proton-laser collisions, Phys. Rev., A 78, 062109, (2008)
[50] Gies, H.; Karbstein, F.; Shaisultanov, R., Laser photon merging in an electromagnetic field inhomogeneity, Phys. Rev., D 90, 033007, (2014)
[51] Gies, H.; Karbstein, F.; Seegert, N., Photon merging and splitting in electromagnetic field inhomogeneities, Phys. Rev., D 93, 085034, (2016)
[52] Adler, SL, Photon splitting and photon dispersion in a strong magnetic field, Annals Phys., 67, 599, (1971)
[53] Adler, SL; Bahcall, JN; Callan, CG; Rosenbluth, MN, Photon splitting in a strong magnetic field, Phys. Rev. Lett., 25, 1061, (1970)
[54] V.O. Papanyan and V.I. Ritus, Vacuum polarization and photon splitting in an intense field, Sov. Phys. JETP34 (1972) 1195 [Zh. Eksp. Teor. Fiz.61 (1971) 2231].
[55] V.O. Papanyan and V.I. Ritus, Three-photon interaction in an intense field and scaling invariance, Sov. Phys. JETP38 (1974) 879 [Zh. Eksp. Teor. Fiz.65 (1973) 1756] [INSPIRE].
[56] Stoneham, RJ, Phonon splitting in the magnetised vacuum, J. Phys., A 12, 2187, (1979)
[57] V.N. Baier, A.I. Milshtein and R.Z. Shaisultanov, Photon splitting in a strong electromagnetic field, Sov. Phys. JETP63 (1986) 665 [Zh. Eksp. Teor. Fiz.90 (1986) 1141] [INSPIRE].
[58] Baier, VN; Milshtein, AI; Shaisultanov, RZ, Photon splitting in a very strong magnetic field, Phys. Rev. Lett., 77, 1691, (1996)
[59] Adler, SL; Schubert, C., Photon splitting in a strong magnetic field: recalculation and comparison with previous calculations, Phys. Rev. Lett., 77, 1695, (1996)
[60] Piazza, A.; Milstein, AI; Keitel, CH, Photon splitting in a laser field, Phys. Rev., A 76, 032103, (2007)
[61] Piazza, A.; Hatsagortsyan, KZ; Keitel, CH, Harmonic generation from laser-driven vacuum, Phys. Rev., D 72, 085005, (2005)
[62] A.M. Fedotov and N.B. Narozhny, Generation of harmonics by a focused laser beam in vacuum, Phys. Lett.A 362 (2007) 1 [hep-ph/0604258] [INSPIRE].
[63] Karbstein, F.; Shaisultanov, R., Stimulated photon emission from the vacuum, Phys. Rev., D 91, 113002, (2015)
[64] Böhl, P.; King, B.; Ruhl, H., Vacuum high harmonic generation in the shock regime, Phys. Rev., A 92, 032115, (2015)
[65] V.I. Ritus, The lagrange function of an intensive electromagnetic field and quantum electrodynamics at small distances, Sov. Phys. JETP42 (1975) 774 [Zh. Eksp. Teor. Fiz.69 (1975) 1517] [INSPIRE].
[66] W. Dittrich and H. Gies, Light propagation in nontrivial QED vacua, Phys. Rev.D 58 (1998) 025004 [hep-ph/9804375] [INSPIRE].
[67] V.I. Ritus, Connection between strong-field quantum electrodynamics with shortdistance quantum electrodynamics, Sov. Phys. JETP46 (1977) 423 [Zh. Eksp. Teor. Fiz.73 (1977) 807].
[68] Karbstein, F.; Shaisultanov, R., Photon propagation in slowly varying inhomogeneous electromagnetic fields, Phys. Rev., D 91, 085027, (2015)
[69] D. Fliegner, M. Reuter, M.G. Schmidt and C. Schubert, The Two loop Euler-Heisenberg Lagrangian in dimensional renormalization, Theor. Math. Phys.113 (1997) 1442 [Teor. Mat. Fiz.113 (1997) 289] [hep-th/9704194] [INSPIRE].
[70] Körs, B.; Schmidt, MG, The effective two loop Euler-Heisenberg action for scalar and spinor QED in a general constant background field, Eur. Phys. J., C 6, 175, (1999)
[71] G.V. Dunne, Heisenberg-Euler effective lagrangians: basics and extensions, in From fields to string. Volume 1, M. Shifman ed., World Scientific, Singapore (2005), hep-th/0406216. · Zbl 1081.81116
[72] Dunne, GV; Gies, H.; Schubert, C., Zero modes, β-functions and IR/UV interplay in higher loop QED, JHEP, 11, 032, (2002)
[73] Cangemi, D.; D’Hoker, E.; Dunne, GV, Effective energy for QED in (2 + 1)-dimensions with semilocalized magnetic fields: a solvable model, Phys. Rev., 52, r3163, (1995)
[74] Dunne, GV; Hall, TM, An exact (3 + 1)-dimensional QED effective action, Phys. Lett., B 419, 322, (1998)
[75] Dunne, GV; Hall, T., On the QED effective action in time dependent electric backgrounds, Phys. Rev., D 58, 105022, (1998)
[76] S.P. Kim, H.K. Lee and Y. Yoon, Effective action of QED in electric field backgrounds II. Spatially localized fields, Phys. Rev.D 82 (2010) 025015 [arXiv:0910.3363] [INSPIRE].
[77] I. Huet, D.G.C. McKeon and C. Schubert, Three-loop Euler-Heisenberg lagrangian and asymptotic analysis in 1 + 1 QED, arXiv:0911.0227 [INSPIRE]. · Zbl 1294.81301
[78] Huet, I.; Rausch de Traubenberg, M.; Schubert, C., The Euler-Heisenberg Lagrangian beyond one loop, Int. J. Mod. Phys. Conf. Ser., 14, 383, (2012)
[79] G.V. Galtsov and N.S. Nikitina, Macroscopic vacuum effects in an inhomogeneous and nonstationary electromagnetic field, Sov. Phys. JETP57 (1983) 705 [Zh. Eksp. Teor. Fiz.84 (1983) 1217].
[80] Gusynin, VP; Shovkovy, IA, Derivative expansion of the effective action for QED in (2 + 1)-dimensions and (3 + 1)-dimensions, J. Math. Phys., 40, 5406, (1999) · Zbl 0968.81071
[81] Martin, LC; Schubert, C.; Villanueva Sandoval, VM, On the low-energy limit of the QED N photon amplitudes, Nucl. Phys., B 668, 335, (2003) · Zbl 1031.81675
[82] Galtsov, D.; Skobelev, V., Photons creation by an external field, Phys. Lett., B 36, 238, (1971)
[83] Karplus, R.; Neuman, M., Non-linear interactions between electromagnetic fields, Phys. Rev., 80, 380, (1950) · Zbl 0041.33121
[84] Karplus, R.; Neuman, M., The scattering of light by light, Phys. Rev., 83, 776, (1951) · Zbl 0043.42407
[85] Bhartia, P.; Valluri, S., Non-linear scattering of light in the limit of ultra-strong fields, Can. J. Phys., 56, 1122, (1978)
[86] Valluri, SR; Bhartia, P., An analytical proof for the generation of higher harmonics due to the interaction of plane electromagnetic waves, Can. J. Phys., 58, 116, (1980) · Zbl 0982.78509
[87] H. Gies, J. Jaeckel and A. Ringwald, Polarized light propagating in a magnetic field as a probe of millicharged fermions, Phys. Rev. Lett.97 (2006) 140402 [hep-ph/0607118] [INSPIRE].
[88] Dittrich, W., One loop effective potentials in QED, J. Phys., A 9, 1171, (1976)
[89] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/25.11#E18, Release 1.0.10 (2015).
[90] Dunne, GV; Schubert, C., Closed form two loop Euler-Heisenberg Lagrangian in a selfdual background, Phys. Lett., B 526, 55, (2002) · Zbl 0983.81107
[91] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, 5\^{th} edition, Academic Press, U.S.A. (1994). · Zbl 0918.65002
[92] Tsai, W-y; Erber, T., The propagation of photons in homogeneous magnetic fields: index of refraction, Phys. Rev., D 12, 1132, (1975)
[93] Karbstein, F., Photon polarization tensor in a homogeneous magnetic or electric field, Phys. Rev., D 88, 085033, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.