×

Two-dimensional capillary origami. (English) Zbl 1377.74011

Summary: We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

MSC:

74K20 Plates
76B45 Capillarity (surface tension) for incompressible inviscid fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids
74M25 Micromechanics of solids
74N15 Analysis of microstructure in solids
74A60 Micromechanical theories
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brittain, S. T.; Schueller, O. J.A.; Wu, H.; Whitesides, S.; Whitesides, G. M., Microorigami: fabrication of small, three-dimensional, metallic structures, J. Phys. Chem. B, 105, 2, 347-350 (2000)
[2] Roman, B.; Bico, J., Elasto-capillarity: deforming an elastic structure with a liquid droplet, J. Phys. Condens. Matter, 22, 49, 493101 (2010)
[3] Ocampo, J. M.Z.; Vaccaro, P. O.; Fleischmann, T.; Wang, T.-S.; Kubota, K.; Aida, T.; Ohnishi, T.; Sugimura, A.; Izumoto, R.; Hosoda, M.; Nashima, S., Optical actuation of micromirrors fabricated by the micro-origami technique, Appl. Phys. Lett., 83, 18, 3647-3649 (2003)
[4] Syms, R. R.A.; Yeatman, E. M.; Bright, V. M.; Whitesides, G. M., Surface tension-powered self-assembly of microstructures—the state-of-the-art, J. Microelectromech. Syst., 12, 4, 387-417 (2003)
[5] Okuzaki, H.; Saido, T.; Suzuki, H.; Hara, Y.; Yan, H., A biomorphic origami actuator fabricated by folding a conducting paper, J. Phys. Conf. Ser., 127, 1, Article 012001 pp. (2008)
[6] Smela, E.; Inganäs, O.; Lundström, I., Controlled folding of micrometer-size structures, Science, 268, 5218, 1735-1738 (1995)
[7] Kovacs, G. T.A.; Petersen, K.; Albin, M., Peer reviewed: silicon micromachining: sensors to systems, Anal. Chem., 68, 13, 407A-412A (1996)
[8] Madou, M., Fundamentals of Microfabrication: The Science of Miniaturization (2002), CRC Press: CRC Press Boca Raton, FL
[9] Jung, S.; Reis, P. M.; James, J.; Clanet, C.; Bush, J. W.M., Capillary origami in nature, Phys. Fluids, 21, Article 091110 pp. (2009) · Zbl 1183.76267
[10] de Mello, A. J., DNA amplification: does “small” really mean “efficient”?, Lab Chip, 1, 2, 24N-29N (2001)
[11] Patra, N.; Wang, B.; Král, P., Nanodroplet activated and guided folding of graphene nanostructures, Nano Lett., 9, 11, 3766-3771 (2009)
[12] Boncheva, M.; Bruzewicz, D. A.; Whitesides, G. M., Millimeter-scale self-assembly and its applications, Pure Appl. Chem., 75, 5, 621-630 (2003)
[13] Cho, J.-H.; Azam, A.; Gracias, D. H., Three dimensional nanofabrication using surface forces, Langmuir, 26, 21, 16534-16539 (2010)
[14] Cho, J.-H.; James, T.; Gracias, D. H., Curving nanostructures using extrinsic stress, Adv. Mater., 22, 21, 2320-2324 (2010)
[15] Py, C.; Reverdy, P.; Doppler, L.; Bico, J.; Roman, B.; Baroud, C. N., Capillary origami: spontaneous wrapping of a droplet with an elastic sheet, Phys. Rev. Lett., 98, 15, Article 156103 pp. (2007)
[16] de Langre, E.; Baroud, C. N.; Reverdy, P., Energy criteria for elasto-capillary wrapping, J. Fluids Struct., 26, 2, 205-217 (2010)
[17] Py, C.; Reverdy, P.; Doppler, L.; Bico, J.; Roman, B.; Baroud, C. N., Capillarity induced folding of elastic sheets, Eur. Phys. J. Spec. Top., 166, 67-71 (2009)
[18] Rivetti, M.; Neukirch, S., Instabilities in a drop-strip system: a simplified model, Proc. R. Soc. Lond. Ser. A, 468, 1304-1324 (2012)
[19] van Honschoten, J. W.; Berenschot, J. W.; Ondarçuhu, T.; Sanders, R. G.P.; Sundaram, J.; Elwenspoek, M.; Tas, N. R., Elastocapillary fabrication of three-dimensional microstructures, Appl. Phys. Lett., 97, 1, Article 014103 pp. (2010)
[20] Antkowiak, A.; Audoly, B.; Josserand, C.; Neukirch, S.; Rivetti, M., Instant fabrication and selection of folded structures using drop impact, Proc. Natl. Acad. Sci. USA, 108, 26, 10400-10404 (2011)
[21] Brubaker, N. D.; Lega, J., Two-dimensional capillary origami with pinned contact line, SIAM J. Appl. Math., 75, 3, 1275-1300 (2015) · Zbl 1328.76016
[22] Piñeirua, M.; Bico, J.; Roman, B., Capillary origami controlled by an electric field, Soft Matter, 6, 4491-4496 (2010)
[23] Jamin, T.; Py, C.; Falcon, E., Instability of the origami of a ferrofluid drop in a magnetic field, Phys. Rev. Lett., 107, Article 204503 pp. (2011)
[25] Finn, R., Equilibrium Capillary Surfaces, Grundlehren Math. Wiss., vol. 284 (1986), Springer-Verlag: Springer-Verlag New York · Zbl 0583.35002
[26] Landau, L. D.; Lifshitz, E. M., Theory of Elasticity, Course Theor. Phys., vol. 7 (1986), Pergamon Press: Pergamon Press Oxford, UK, translated from Russian by J.B. Sykes, W.H. Reid
[27] Péraud, J. P.; Lauga, E., Geometry and wetting of capillary folding, Phys. Rev. E, 89, Article 043011 pp. (2014)
[28] Johnston, I. D.; McCluskey, D. K.; Tan, C. K.L.; Tracey, M. C., Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering, J. Micromech. Microeng., 24, Article 035017 pp. (2014)
[29] Dias, M. A.; Dudte, L. H.; Mahadevan, L.; Santangelo, C. D., Geometric mechanics of curved crease origami, Phys. Rev. Lett., 109, Article 114301 pp. (2012)
[30] Knoche, S.; Kierfeld, J., Buckling of spherical capsules, Phys. Rev. E, 84, Article 046608 pp. (2011)
[31] Meyer, M.; Desbrun, M.; Schroderl, P.; Barr, A. H., Discrete differential-geometry operators for triangulated 2-manifolds, (Hege, H. C.; Polthier, K., Visualization and Mathematics III (2003), Springer-Verlag: Springer-Verlag Berlin, Heidelberg), 35-57 · Zbl 1069.53004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.