×

On the duality between rotational minimal surfaces and maximal surfaces. (English) Zbl 1377.53012

Summary: We investigate the duality between minimal surfaces in Euclidean space and maximal surfaces in Lorentz-Minkowski space in the framework of rotational surfaces. We study if the dual surfaces of two congruent rotational minimal (or maximal) surfaces are congruent. We analyze the duality process when we deform a rotational minimal (maximal) surface by a one-parametric group of rotations. In this context, the family of Bonnet minimal (maximal) surfaces and the Goursat transformations play a remarkable role.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A35 Non-Euclidean differential geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Albujer, A. L.; Alías, L. J., Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys., 59, 620-631 (2009) · Zbl 1173.53025
[2] Alías, L. J.; Chaves, R. M.B.; Mira, P., Björling problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc., 134, 289-316 (2003) · Zbl 1027.53063
[3] Araújo, H.; Leite, M. L., How many maximal surfaces do correspond to one minimal surface?, Math. Proc. Cambridge Philos. Soc., 146, 165-175 (2009) · Zbl 1165.53007
[4] Bonnet, O., Mémoire sur l’emploi d’un nouveau système de variables dans l’étude des surfaces courbes, J. Math. Pures Appl., 2, 153-266 (1860)
[5] Calabi, E., Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math., 15, 223-230 (1970) · Zbl 0211.12801
[6] Cho, J.; Ogata, Y., Deformation of minimal surfaces with planar curvature lines, J. Geom., 108, 463-479 (2017) · Zbl 1381.53023
[7] Goursat, E., Sur un mode de transformation des surfaces minima, Acta Math., 11, 135-186 (1887) · JFM 20.0833.02
[8] Gu, C. H., The extremal surfaces in the 3-dimensional Minkowski space, Acta Math. Sin., New Ser., 1, 173-180 (1985) · Zbl 0595.49027
[9] Hertrich-Jeromin, U., Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series, vol. 300 (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1040.53002
[10] Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space \(L^3\), Tokyo J. Math., 6, 297-309 (1983) · Zbl 0535.53052
[11] Lee, H., Extensions of the duality between minimal surfaces and maximal surfaces, Geom. Dedicata, 151, 373-386 (2011) · Zbl 1211.53010
[12] Lee, H., Minimal surface systems, maximal surface systems and special Lagrangian equations, Trans. Amer. Math. Soc., 365, 3775-3797 (2013) · Zbl 1275.49074
[13] Leite, M. L., Surfaces with planar lines of curvature and orthogonal systems of cycles, J. Math. Anal. Appl., 421, 1254-1273 (2015) · Zbl 1298.53051
[14] López, F. J.; López, R.; Souam, R., Maximal surfaces of Riemann type in Lorentz-Minkowski space \(L^3\), Michigan Math. J., 47, 469-497 (2000) · Zbl 1029.53014
[15] Manhart, F., Bonnet-Thomsen surfaces in Minkowski geometry, J. Geom., 106, 47-61 (2015) · Zbl 1327.53011
[16] Mira, P.; Pastor, J. A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math., 140, 315-334 (2003) · Zbl 1050.53014
[17] Nitsche, J. C.C., Lectures on Minimal Surfaces, vol. 1 (1989), Cambridge University Press · Zbl 0202.20601
[18] Osserman, R., A Survey of Minimal Surfaces (1989), Cambridge Univ. Press: Cambridge Univ. Press New York · Zbl 0209.52901
[19] Palmer, B., Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms, Ann. Global Anal. Geom., 8, 217-226 (1990) · Zbl 0711.53048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.