×

zbMATH — the first resource for mathematics

Robust and Pareto optimality of insurance contracts. (English) Zbl 1376.91097
Summary: The optimal insurance problem represents a fast growing topic that explains the most efficient contract that an insurance player may get. The classical problem investigates the ideal contract under the assumption that the underlying risk distribution is known, i.e., by ignoring the parameter and model risks. Taking these sources of risk into account, the decision-maker aims to identify a robust optimal contract that is not sensitive to the chosen risk distribution. We focus on value-at-risk (VaR) and conditional value-at-risk (CVaR)-based decisions, but further extensions for other risk measures are easily possible. The worst-case scenario and worst-case regret robust models are discussed in this paper, which have been already used in robust optimisation literature related to the investment portfolio problem. Closed-form solutions are obtained for the VaR worst-case scenario case, while linear programming (LP) formulations are provided for all other cases. A caveat of robust optimisation is that the optimal solution may not be unique, and therefore, it may not be economically acceptable, i.e., Pareto optimal. This issue is numerically addressed and simple numerical methods are found for constructing insurance contracts that are Pareto and robust optimal. Our numerical illustrations show weak evidence in favour of our robust solutions for VaR-decisions, while our robust methods are clearly preferred for CVaR-based decisions.

MSC:
91B30 Risk theory, insurance (MSC2010)
90C29 Multi-objective and goal programming
91G70 Statistical methods; risk measures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acerbi, C., & Székely, B. (2014). Backtesting expected shortfall. Risk magazine.
[2] Acerbi, C.; Tasche, D., On the coherence of expected shortfall, Journal of Banking & Finance, 26, 7, 1487-1503, (2002)
[3] Appa, G., On the uniqueness of solutions to linear programs, Journal of the Operational Research Society, 53, 10, 1127-1132, (2002) · Zbl 1139.90401
[4] Arrow, K. J., Uncertainty and the welfare economics of medical care, American Economic Review, 53, 3, 941-973, (1963)
[5] Artzner, P.; Delbaen, F.; Eber, J.; Heath, D., Coherent measures of risk, Mathematical Finance, 9, 3, 203-228, (1999) · Zbl 0980.91042
[6] Asimit, A. V.; Badescu, A. M.; Tsanakas, A., Optimal risk transfers in insurance groups, European Actuarial Journal, 3, 159-190, (2013) · Zbl 1270.91028
[7] Asimit, A. V.; Badescu, A. M.; Verdonck, T., Optimal risk transfer under quantile-based risk measures, Insurance: Mathematics and Economics, 53, 252-265, (2013) · Zbl 1284.91199
[8] Asimit, V., Gao, T., Hu, J., & Kim, E. S. (2017). Optimal risk transfer: A numerical optimisation approach. Available at: http://papers.ssrn.com/abstract_id=2797562. · Zbl 1416.91149
[9] Balbás, A.; Balbás, B.; Balbás, R.; Heras, A., Optimal reinsurance under risk and uncertainty, Insurance: Mathematics and Economics, 60, 61-74, (2015) · Zbl 1308.91075
[10] Balbás, A.; Balbás, B.; Heras, A., Optimal reinsurance with general risk measures, Insurance: Mathematics and Economics, 44, 374-384, (2009) · Zbl 1162.91394
[11] Balbás, A.; Balbás, B.; Heras, A., Stable solutions for optimal reinsurance problems involving risk measures, European Journal of Operational Research, 214, 796-804, (2011) · Zbl 1219.91064
[12] Bellini, F.; Bignozzi, V., On elicitable risk measures, Quantitative Finance, 15, 5, 725-733, (2015) · Zbl 1395.91506
[13] Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A., Robust optimization, (2009), Princeton University Press New Jersey · Zbl 1221.90001
[14] Ben-Tal, A.; Nemirovski, A., Selected topics in robust convex optimization, Mathematical Programming, 112, 1, 125-158, (2008) · Zbl 1135.90046
[15] Bertsimas, D.; Brown, D. B.; Caramanis, C., Theory and applications of robust optimization, SIAM Review, 53, 3, 464-501, (2011) · Zbl 1233.90259
[16] Borch, K., An attempt to determine the optimum amount of stop loss reinsurance, Transactions of the 16th international congress of actuaries I, 597-610, (1960)
[17] Cai, J.; Tan, K. S., Optimal retention for a stop-loss reinsurance under the var and CTE risk measure, ASTIN Bulletin, 37, 1, 93-112, (2007) · Zbl 1162.91402
[18] Cai, J.; Wei, W., Optimal reinsurance with positively dependent risks, Insurance: Mathematics and Economics, 50, 57-63, (2012) · Zbl 1239.91075
[19] Cai, J.; Weng, C. G., Optimal reinsurance with expectile, Scandinavian Actuarial Journal, 7, 624-645, (2016) · Zbl 1401.91106
[20] Calder, A., Couper, A., & Lo, J. (2012). Catastrophe model blending techniques and governance. The actuarial profession. URL https://www.actuaries.org.uk/documents/brian-hey-prize-catastrophe-model-blending.
[21] Cheung, K. C.; Lo, A., Characterizations of optimal reinsurance treaties: a cost-benefit approach, Scandinavian Actuarial Journal, 2017, 1, 1-28, (2017) · Zbl 1401.91112
[22] Cheung, K. C.; Sung, K. C.J.; Yam, S. C.P.; Yung, S. P., Optimal reinsurance under general law-invariant risk measures, Scandinavian Actuarial Journal, 1, 72-91, (2014) · Zbl 1401.91110
[23] Cont, R., Model uncertainty and its impact on the pricing of derivative instruments, Mathematical Finance, 16, 3, 519-547, (2006) · Zbl 1133.91413
[24] Cont, R.; Deguest, R.; Scandolo, G., Robustness and sensitivity analysis of risk measurement procedures, Quantitative Finance, 10, 6, 593-606, (2010) · Zbl 1192.91191
[25] Delbaen, F.; Bellini, F.; Bignozzi, V.; Ziegel, J. F., On risk measures with the cxls property, Finance and Stochastics, 20, 2, 433-453, (2016) · Zbl 1376.91173
[26] Dhaene, J.; Kukush, A.; Linders, D.; Tang, Q., Remarks on quantiles and distortion risk measures, European Actuarial Journal, 2, 2, 319-328, (2012) · Zbl 1256.91027
[27] El Ghaoui, L.; Oks, M.; Oustry, F., Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51, 4, 543-556, (2003) · Zbl 1165.91397
[28] Emmer, S.; Kratz, M.; Tasche, D., What is the best risk measure in practice? A comparison of standard measures, Journal of Risk, 18, 2, 31-60, (2015)
[29] Fissler, T.; Ziegel, J. F., Higher order elicitability and osband’s principle, The Annals of Statistics, 44, 4, 1680-1707, (2016) · Zbl 1355.62006
[30] Gabrel, V.; Murat, C.; Thiele, A., Recent advances in robust optimization: an overview, European Journal of Operational Research, 235, 3, 471-483, (2014) · Zbl 1305.90390
[31] Gilboa, I.; Schmeidler, D., Maxmin expected utility with non-unique prior, Journal of Mathematical Economics, 18, 2, 141-153, (1989) · Zbl 0675.90012
[32] Gneiting, T., Making and evaluating point forecasts, Journal of the American Statistical Association, 106, 494, 746-762, (2011) · Zbl 1232.62028
[33] Güler, O., Foundations of optimization, (2010), Springer New York · Zbl 1220.90001
[34] Hampel, F. R., Contribution to the theory of robust estimation, Ph.D Thesis, (1968), University of California, Berkeley
[35] Huang, D.; Zhu, S.; Fabozzi, F. J.; Fukushima, M., Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European Journal of Operational Research, 203, 1, 185-194, (2010) · Zbl 1176.91145
[36] Huber, P. J., Robust estimation of a location parameter, Annals of Mathematical Statistics, 35, 1, 73-101, (1964) · Zbl 0136.39805
[37] Huberman, G.; Mayers, D.; Smith, C. W., Optimal insurance policy indemnity schedules, The Bell Journal of Economics, 14, 2, 415-426, (1983)
[38] Iancu, D. A.; Trichakis, N., Pareto efficiency in robust optimisation, Management Science, 60, 1, 130-147, (2014)
[39] Kakouris, I.; Rustem, B., Robust portfolio optimization with copulas, European Journal of Operational Research, 235, 1, 28-37, (2014) · Zbl 1305.91221
[40] Kaluszka, M., Optimal reinsurance under convex principles of premium calculation, Insurance: Mathematics and Economics, 36, 3, 375-398, (2005) · Zbl 1120.62092
[41] Kaluszka, M.; Okolewski, A., An extension of arrows result on optimal reinsurance contract, Journal of Risk and Insurance, 75, 2, 275-288, (2008)
[42] Kiesel, R.; Rühlicke, R.; Stahl, G.; Zheng, J., The Wasserstein metric and robustness in risk management, Risks, 4, 3, 32, (2016)
[43] Koch-Medina, P.; Munari, C., Unexpected shortfalls of expected shortfall: extreme default profiles and regulatory arbitrage, Journal of Banking & Finance, 62, 141-151, (2016)
[44] Krätschmer, V.; Schied, A.; Zähle, H., Comparative and qualitative robustness for law-invariant risk measures, Finance and Stochastics, 18, 2, 271-295, (2014) · Zbl 1298.91195
[45] Landsberger, M.; Meilljson, I., Co-monotone allocations, Bickel-lehmann dispersion and the arrow-pratt measure of risk aversion, Annals of Operations Research, 52, 2, 97-106, (1994) · Zbl 0812.90028
[46] Ludkovski, M.; Rüschendorf, L., On comonotonicity of Pareto optimal allocations, Statistics and Probability Letters, 78, 10, 1181-1188, (2008) · Zbl 1140.91424
[47] Mangasarian, O. L., Uniqueness of solution in linear programming, Linear Algebra and its Applications, 25, 151-162, (1979) · Zbl 0399.90053
[48] Polak, G. G.; Rogers, D. F.; Sweeney, D. J., Risk management strategies via minimax portfolio optimization, European Journal of Operational Research, 207, 1, 409-419, (2010) · Zbl 1205.91091
[49] Rockafeller, R. T.; Uryasev, S., Optimization of conditional value-at-risk, Journal of Risk, 2, 21-41, (2000)
[50] Song, Y.; Yan, J. A., Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders, Insurance: Mathematics and Economics, 45, 3, 459-465, (2009) · Zbl 1231.91237
[51] SPAN, Standard portfolio analysis of risk, (1995), Chicago Mercantile Exchange Chicago
[52] Wang, S.; Young, V. R.; Panjer, H. H., Axiomatic characterization of insurance prices, Insurance: Mathematics and Economics, 21, 2, 173-183, (1997) · Zbl 0959.62099
[53] Young, V. R., Premium principles, Encyclopedia of actuarial science, (2004), Wiley New York
[54] Zhu, S.; Fukushima, M., Worst-case conditional value-at-risk with application to robust portfolio management, Operations Research, 57, 5, 1155-1168, (2009) · Zbl 1233.91254
[55] Zymler, S.; Kuhn, D.; Rustem, B., Worst-case value-at-risk of nonlinear portfolios, Management Science, 59, 1, 172-188, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.