A scaling theory for the long-range to short-range crossover and an infrared duality\(^*\).

*(English)*Zbl 1376.82012##### MSC:

82B20 | Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics |

82B26 | Phase transitions (general) in equilibrium statistical mechanics |

81T40 | Two-dimensional field theories, conformal field theories, etc. in quantum mechanics |

82B27 | Critical phenomena in equilibrium statistical mechanics |

35Q82 | PDEs in connection with statistical mechanics |

82D40 | Statistical mechanics of magnetic materials |

##### Software:

SDPB
PDF
BibTeX
XML
Cite

\textit{C. Behan} et al., J. Phys. A, Math. Theor. 50, No. 35, Article ID 354002, 48 p. (2017; Zbl 1376.82012)

Full Text:
DOI

##### References:

[1] | Behan C, Rastelli L, Rychkov S and Zan B 2017 Long-range critical exponents near the short-range crossover Phys. Rev. Lett.118 241601 |

[2] | Sak J 1973 Recursion relations and fixed points for ferromagnets with long-range interactions Phys. Rev. B 8 281-5 |

[3] | Fisher M E, Ma S-k and Nickel B 1972 Critical Exponents for Long-Range Interactions Phys. Rev. Lett.29 917-20 |

[4] | Sak J 1977 Low-temperature renormalization group for ferromagnets with long-range interactions Phys. Rev. B 15 4344-7 |

[5] | Cardy J L 1996 Scaling and Renormalization in Statistical Physics (Cambridge: Cambridge University Press) 238 p |

[6] | Paulos M F, Rychkov S, van Rees B C and Zan B 2016 Conformal invariance in the long-range Ising model Nucl. Phys. B 902 246-91 |

[7] | Seiberg N 1995 Electric—magnetic duality in supersymmetric nonAbelian gauge theories Nucl. Phys. B 435 129-46 |

[8] | Peskin M E 1978 Mandelstam-’t Hooft duality in abelian lattice models Ann. Phys.113 122-52 |

[9] | Dasgupta C and Halperin B I 1981 Phase transition in a lattice model of superconductivity Phys. Rev. Lett.47 1556-60 |

[10] | Belavin A, Polyakov A M and Zamolodchikov A 1984 Infinite conformal symmetry in two-dimensional quantum field theory Nucl. Phys. B 241 333-80 |

[11] | Zamolodchikov A B 1987 Renormalization group and perturbation theory near fixed points in two-dimensional field theory Sov. J. Nucl. Phys.46 1090 |

[12] | Zamolodchikov A B 1987 Yad. Fiz.46 1819 |

[13] | Cardy J 1989 Conformal field theory and statistical mechanics Les Houches, Session XLIX, 1988, Fields, Strings and Critical Phenomena ed E Brézin and J Zinn-Justin (Amsterdam: Elsevier) |

[14] | Cappelli A, Latorre J I and Vilasis-Cardona X 1992 Renormalization group patterns and C theorem in more than two-dimensions Nucl. Phys. B 376 510-38 |

[15] | Gaberdiel M R, Konechny A and Schmidt-Colinet C 2009 Conformal perturbation theory beyond the leading order J. Phys. A: Math. Theor.42 105402 |

[16] | Poghossian R 2014 Two dimensional renormalization group flows in next to leading order J. High Energy Phys.JHEP01(2014) 167 |

[17] | Komargodski Z and Simmons-Duffin D 2017 The random-bond Ising model in 2.01 and 3 dimensions J. Phys. A: Math. Theor.50 154001 |

[18] | El-Showk S, Paulos M F, Poland D, Rychkov S, Simmons-Duffin D and Vichi A 2012 Solving the 3D Ising model with the conformal bootstrap Phys. Rev. D 86 025022 |

[19] | El-Showk S, Paulos M F, Poland D, Rychkov S, Simmons-Duffin D and Vichi A 2014 Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents J. Stat. Phys.157 869 |

[20] | Simmons-Duffin D 2015 A semidefinite program solver for the conformal bootstrap J. High Energy Phys.JHEP06(2015) 174 |

[21] | Kos F, Poland D, Simmons-Duffin D and Vichi A 2016 Precision islands in the Ising and O(N) models J. High Energy Phys.JHEP08(2016) 036 |

[22] | Simmons-Duffin D 2017 The lightcone bootstrap and the spectrum of the 3d Ising CFT J. High Energy Phys.JHEP03(2017) 086 |

[23] | Rychkov S, Simmons-Duffin D and Zan B 2017 Non-gaussianity of the critical 3d Ising model SciPost Phys.2 001 |

[24] | Hogervorst M and Rychkov S 2013 Radial coordinates for conformal blocks Phys. Rev. D 87 106004 |

[25] | Kos F, Poland D and Simmons-Duffin D 2014 Bootstrapping the O(N) vector models J. High Energy Phys.JHEP06(2014) 091 |

[26] | Costa M S, Hansen T, Penedones J and Trevisani E 2016 Radial expansion for spinning conformal blocks J. High Energy Phys.JHEP07(2016) 057 |

[27] | Pappadopulo D, Rychkov S, Espin J and Rattazzi R 2012 OPE convergence in conformal field theory Phys. Rev. D 86 105043 |

[28] | Rychkov S and Yvernay P 2016 Remarks on the convergence properties of the conformal block Expansion Phys. Lett. B 753 682-6 |

[29] | Mattis M P 1987 Correlations in two-dimensional critical theories Nucl. Phys. B 285 671-86 |

[30] | Rychkov S and Tan Z M 2015 The ε-expansion from conformal field theory J. Phys. A: Math. Theor.48 29FT01 |

[31] | Skvortsov E D 2017 On (un)broken higher-spin symmetry in vector models Proc., Int. Workshop on Higher Spin Gauge Theories(Singapore, 4-6 November 2015) pp 103-37 |

[32] | Giombi S and Kirilin V 2016 Anomalous dimensions in CFT with weakly broken higher spin symmetry J. High Energy Phys.JHEP11(2016) 068 |

[33] | Roumpedakis K 2017 Leading order anomalous dimensions at the Wilson-Fisher fixed point from CFT J. High Energy Phys.JHEP07(2017) 109 |

[34] | Osborn H and Petkou A C 1994 Implications of conformal invariance in field theories for general dimensions Ann. Phys.231 311-62 |

[35] | Rattazzi R, Rychkov S and Vichi A 2011 Central charge bounds in 4D conformal field theory Phys. Rev. D 83 046011 |

[36] | Kos F, Poland D and Simmons-Duffin D 2014 Bootstrapping mixed correlators in the 3D Ising model J. High Energy Phys.JHEP11(2014) 109 |

[37] | Aizenman M and Fernández R 1988 Critical exponents for long-range interactions Lett. Math. Phys.16 39-49 |

[38] | Vasil’ev A N 2004 The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Boca Raton, FL: CRC Press) 681 p |

[39] | Parisi G 1972 Conformal invariance in perturbation theory Phys. Lett. B 39 643-5 |

[40] | Brown L S 1980 Dimensional regularization of composite operators in scalar field theory Ann. Phys.126 135 |

[41] | Braun V M, Korchemsky G P and Mueller D 2003 The Uses of conformal symmetry in QCD Prog. Part. Nucl. Phys.51 311-98 |

[42] | Symanzik K 1972 On Calculations in conformal invariant field theories Lett. Nuovo Cimento3 734-8 |

[43] | Gliozzi F, Liendo P, Meineri M and Rago A 2015 Boundary and interface CFTs from the conformal bootstrap J. High Energy Phys.JHEP05(2015) 036 |

[44] | Brezin E, Parisi G and Ricci-Tersenghi F 2014 The crossover region between long-range and short-range interactions for the critical exponents J. Stat. Phys.157 855-68 |

[45] | Behan C et al work in progress |

[46] | Billó M, Caselle M, Gaiotto D, Gliozzi F, Meineri M and Pellegrini R 2013 Line defects in the 3d Ising model J. High Energy Phys.JHEP07(2013) 055 |

[47] | Gaiotto D, Mazac D and Paulos M F 2014 Bootstrapping the 3d Ising twist defect J. High Energy Phys.JHEP03(2014) 100 |

[48] | Mazáč D and Trevisani E work in progress |

[49] | Paulos M F, Penedones J, Toledo J, van Rees B C and Vieira P 2016 The S-matrix bootstrap I: QFT in AdS arXiv:1607.06109 [hep-th] |

[50] | Holovatch Y 1993 Critical exponents of Ising-like systems in general dimensions Theor. Math. Phys.96 1099-109 |

[51] | Dyson F J 1969 Existence of a phase-transition in a one-dimensional ising ferromagnet Commun. Math. Phys.12 91-107 |

[52] | Aizenman M, Duminil-Copin H and Sidoravicius V 2015 Random currents and continuity of Ising model’s spontaneous magnetization Commun. Math. Phys.334 719-42 |

[53] | Thouless D J 1969 Long-range order in one-dimensional Ising systems Phys. Rev.187 732-3 |

[54] | Aizenman M, Chayes J T, Chayes L and Newman C M 1988 Discontinuity of the magnetization in one-dimensional 1/|x−y|2 Ising and Potts models J. Stat. Phys.50 1-40 |

[55] | Anderson P W and Yuval G 1971 Some numerical results on the Kondo problem and the inverse square one-dimensional Ising model J. Phys. C: Solid State Phys.4 607-20 |

[56] | Bhattacharjee J, Chakravarty S, Richardson J L and Scalapino D J 1981 Some properties of a one-dimensional Ising chain with an inverse-square interaction Phys. Rev. B 24 3862-5 |

[57] | Honkonen J and Nalimov M Y 1989 Crossover between field theories with short range and long range exchange or correlations J. Phys. A: Math. Gen.22 751-63 |

[58] | Honkonen J 1990 Critical behavior of the long range (ϕ2)2 model in the short range limit J. Phys. A: Math. Gen.23 825-31 |

[59] | Luijten E and Blöte H W J 2002 Boundary between long-range and short-range critical behavior in systems with algebraic interactions Phys. Rev. Lett.89 025703 |

[60] | Picco M 2012 Critical behavior of the Ising model with long range interactions arXiv:1207.1018 [cond-mat.stat-mech] |

[61] | Blanchard T, Picco M and Rajabpour M 2013 Influence of long-range interactions on the critical behavior of the Ising model Europhys. Lett.101 56003 |

[62] | Angelini M C, Parisi G and Ricci-Tersenghi F 2014 Relations between short-range and long-range ising models Phys. Rev. E 89 062120 |

[63] | Defenu N, Trombettoni A and Codello A 2015 Fixed-point structure and effective fractional dimensionality for O(N) models with long-range interactions Phys. Rev. E 92 052113 |

[64] | Gubser S S, Jepsen C, Parikh S and Trundy B 2017 O(N) and O(N) and O(N) arXiv:1703.04202 [hep-th] |

[65] | Brydges D C, Mitter P K and Scoppola B 2003 Critical Φ3,ϵ4 Commun. Math. Phys.240 281-327 |

[66] | Abdesselam A 2007 A complete renormalization group trajectory between two fixed points Commun. Math. Phys.276 727-72 |

[67] | Mitter P K 2013 Long range ferromagnets: renormalization group analysis. https://hal.archives-ouvertes.fr/cel-01239463 presented in a talk at LPTHE, Université Pierre et Marie Curie, Paris |

[68] | Slade G 2016 Critical exponents for long-range O(n) models below the upper critical dimension arXiv:1611.06169 [math-ph] |

[69] | Collins J C 1986 Renormalization (Cambridge: Cambridge University Press) |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.