×

zbMATH — the first resource for mathematics

Dismantlability of weakly systolic complexes and applications. (English) Zbl 1376.20047
Summary: The main goal of this paper is proving the fixed point theorem for finite groups acting on weakly systolic complexes. As corollaries we obtain results concerning classifying spaces for the family of finite subgroups of weakly systolic groups and conjugacy classes of finite subgroups. As immediate consequences we get new results on systolic complexes and groups.
The fixed point theorem is proved by using a graph-theoretical tool – dismantlability. In particular we show that \( 1\)-skeleta of weakly systolic complexes, i.e., weakly bridged graphs, are dismantlable. On the way we show numerous characterizations of weakly bridged graphs and weakly systolic complexes.

MSC:
20F65 Geometric group theory
57M07 Topological methods in group theory
57M15 Relations of low-dimensional topology with graph theory
20F67 Hyperbolic groups and nonpositively curved groups
05C12 Distance in graphs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Anstee, R. P.; Farber, M., On bridged graphs and cop-win graphs, J. Combin. Theory Ser. B, 44, 1, 22-28, (1988) · Zbl 0654.05049
[2] Bandelt, Hans-J\"urgen; Chepoi, Victor, A Helly theorem in weakly modular space, Discrete Math., 160, 1-3, 25-39, (1996) · Zbl 0864.05049
[3] Bandelt, Hans-J\"urgen; Chepoi, Victor, Decomposition and \(l_1\)-embedding of weakly median graphs, European J. Combin., 21, 6, 701-714, (2000) · Zbl 0965.05081
[4] Bandelt, Hans-J\"urgen; Chepoi, Victor, Metric graph theory and geometry: a survey. Surveys on discrete and computational geometry, Contemp. Math. 453, 49-86, (2008), Amer. Math. Soc.: Providence, RI:Amer. Math. Soc. · Zbl 1169.05015
[5] Bridson, Martin R.; Haefliger, Andr\'e, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319, xxii+643 pp., (1999), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0988.53001
[6] Guido’s book of conjectures, Monographies de L’Enseignement Math\'ematique [Monographs of L’Enseignement Math\'ematique] 40, 189 pp., (2008), L’Enseignement Math\'ematique: Geneva:L’Enseignement Math\'ematique
[7] Chepo\u \i , V. D., Classification of graphs by means of metric triangles, Metody Diskret. Analiz., 49, 75-93, 96, (1989)
[8] Chepoi, Victor, Bridged graphs are cop-win graphs: an algorithmic proof, J. Combin. Theory Ser. B, 69, 1, 97-100, (1997) · Zbl 0873.05060
[9] Chepoi, Victor, Graphs of some \({\rm CAT}(0)\) complexes, Adv. in Appl. Math., 24, 2, 125-179, (2000) · Zbl 1019.57001
[10] Civan, Yusuf; Yal\cc\i n, Erg\"un, Linear colorings of simplicial complexes and collapsing, J. Combin. Theory Ser. A, 114, 7, 1315-1331, (2007) · Zbl 1126.05046
[11] Diestel, Reinhard, Graph theory, Graduate Texts in Mathematics 173, xviii+437 pp., (2010), Springer: Heidelberg:Springer · Zbl 1204.05001
[12] Epstein, David B. A.; Cannon, James W.; Holt, Derek F.; Levy, Silvio V. F.; Paterson, Michael S.; Thurston, William P., Word processing in groups, xii+330 pp., (1992), Jones and Bartlett Publishers: Boston, MA:Jones and Bartlett Publishers · Zbl 0764.20017
[13] Farber, Martin, On diameters and radii of bridged graphs, Discrete Math., 73, 3, 249-260, (1989) · Zbl 0667.05036
[14] Farber, Martin; Jamison, Robert E., On local convexity in graphs, Discrete Math., 66, 3, 231-247, (1987) · Zbl 0619.05032
[15] Gromov, M., Hyperbolic groups. Essays in group theory, Math. Sci. Res. Inst. Publ. 8, 75-263, (1987), Springer: New York:Springer
[16] Haglund, Fr\' ed\' eric, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay, 71, (2003)
[17] Hell, Pavol; Ne\vset\vril, Jaroslav, Graphs and homomorphisms, Oxford Lecture Series in Mathematics and its Applications 28, xii+244 pp., (2004), Oxford University Press: Oxford:Oxford University Press · Zbl 1062.05139
[18] Januszkiewicz, Tadeusz; \'Swi\catkowski, Jacek, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes \'Etudes Sci., 104, 1-85, (2006) · Zbl 1143.53039
[19] L\`‘uck, Wolfgang, Survey on classifying spaces for families of subgroups. Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math. 248, 269-322, (2005), Birkh\"auser: Basel:Birkh\'’auser · Zbl 1117.55013
[20] Lyndon, Roger C.; Schupp, Paul E., Combinatorial group theory, Classics in Mathematics, xiv+339 pp., (2001), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0997.20037
[21] Matou\vsek, Ji\vr\'\i , LC reductions yield isomorphic simplicial complexes, Contrib. Discrete Math., 3, 2, 37-39, (2008) · Zbl 1191.52011
[22] Osajda, Damian, Connectedness at infinity of systolic complexes and groups, Groups Geom. Dyn., 1, 2, 183-203, (2007) · Zbl 1128.20029
[23] Osajda, Damian, A combinatorial non-positive curvature I: weak systolicity, (2010)
[24] Osajda, Damian, A construction of hyperbolic Coxeter groups, Comment. Math. Helv., 88, 2, 353-367, (2013) · Zbl 1282.20049
[25] Osajda, Damian; Przytycki, Piotr, Boundaries of systolic groups, Geom. Topol., 13, 5, 2807-2880, (2009) · Zbl 1271.20056
[26] Osajda, Damian; \'Swi\c atkowski, Jacek, On asymptotically hereditarily aspherical groups, (2010) · Zbl 1360.20040
[27] Polat, Norbert, Graphs without isometric rays and invariant subgraph properties. I, J. Graph Theory, 27, 2, 99-109, (1998) · Zbl 0894.05037
[28] Polat, Norbert, On infinite bridged graphs and strongly dismantlable graphs, Discrete Math., 211, 1-3, 153-166, (2000) · Zbl 0959.05100
[29] Polat, Norbert, On isometric subgraphs of infinite bridged graphs and geodesic convexity, Discrete Math., 244, 1-3, 399-416, (2002) · Zbl 0995.05045
[30] Polat, Norbert, Fixed finite subgraph theorems in infinite weakly modular graphs, Discrete Math., 285, 1-3, 239-256, (2004) · Zbl 1044.05036
[31] Przytycki, Piotr, The fixed point theorem for simplicial nonpositive curvature, Math. Proc. Cambridge Philos. Soc., 144, 3, 683-695, (2008) · Zbl 1152.20038
[32] Przytycki, Piotr, \(\underline EG\) for systolic groups, Comment. Math. Helv., 84, 1, 159-169, (2009) · Zbl 1229.20036
[33] Przytycki, Piotr; Schultens, Jennifer, Contractibility of the Kakimizu complex and symmetric Seifert surfaces, Trans. Amer. Math. Soc., 364, 3, 1489-1508, (2012) · Zbl 1239.57025
[34] Roller, Martin A., Poc sets, median algebras and group actions. An extended study of Dunwoody’s construction and Sageev’s theorem, Univ. of Southampton Preprint Ser., (1998)
[35] Rose, Donald J.; Tarjan, R. Endre; Lueker, George S., Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5, 2, 266-283, (1976) · Zbl 0353.65019
[36] Rosenthal, David, Split injectivity of the Baum-Connes assembly map, Pure Appl. Math. Q, 8, 2, 451-477, (2012) · Zbl 1286.19003
[37] Soltan, V. P.; Chepo\u \i , V. D., Conditions for invariance of set diameters under \(d\)-convexification in a graph, Kibernetika (Kiev). Cybernetics, 19, 6, 750-756 (1984), (1983) · Zbl 0564.05037
[38] Weetman, G. M., A construction of locally homogeneous graphs, J. London Math. Soc. (2), 50, 1, 68-86, (1994) · Zbl 0805.05081
[39] Wise, Daniel T., Sixtolic complexes and their fundamental groups, (2003)
[40] Zawi\' slak, Pawe\l , O pewnych w\l asno\' sciach \(6\)–systolicznych kompleks\' ow symplicjalnych, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.