×

Statistical manifestation of quantum correlations via disequilibrium. (English) Zbl 1375.82076

Summary: The statistical notion of disequilibrium (\(D\)) was introduced by R. López-Ruiz et al. [“A statistical measure of complexity”, Phys. Lett., A 209, No. 5–6, 321–326 (1995; doi:10.1016/0375-9601(95)00867-5)] more than 20 years ago. \(D\) measures the amount of “correlational structure” of a system. We wish to use \(D\) to analyze one of the simplest types of quantum correlations, those present in gaseous systems due to symmetry considerations. To this end, we extend the LMC formalism to the grand canonical environment and show that \(D\) displays distinctive behaviors for simple gases, that allow for interesting insights into their structural properties.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] López-Ruiz, R.; Mancini, H. L.; Calbet, X., A statistical measure of complexity, Phys. Lett. A, 209, 321-326 (1995)
[2] Crutchfield, J. P., The calculi of emergence: computation, dynamics and induction, Physica D, 75, 11-54 (1994) · Zbl 0860.68046
[3] Feldman, D. P.; Crutchfield, J. P., Measures of statistical complexity: why?, Phys. Lett. A, 238, 244-252 (1998) · Zbl 1026.82505
[4] Pennnini, F.; Plastino, A., Disequilibrium, thermodynamic relations, and Rényi’s entropy, Phys. Lett. A, 381, 212-215 (2017) · Zbl 1372.94373
[5] Martin, M. T.; Plastino, A.; Rosso, O. A., Statistical complexity and disequilibrium, Phys. Lett. A, 311, 126-132 (2003) · Zbl 1060.60500
[6] Rudnicki, L.; Toranzo, I. V.; Sánchez-Moreno, P.; Dehesa, J. S., Monotone measures of statistical complexity, Phys. Lett. A, 380, 377-380 (2016) · Zbl 1349.81065
[7] López-Ruiz, R.; Mancini, H.; Calbet, X., A statistical measure of complexity, (Kowalski, A.; Rossignoli, R.; Curado, E. M.C., Concepts and Recent Advances in Generalized Information Measures and Statistics (2013), Bentham Science Books: Bentham Science Books New York), 147-168
[8] (Sen, K. D., Statistical Complexity. Applications in Electronic Structure (2011), Springer: Springer Berlin)
[9] Mitchell, M., Complexity: A Guided Tour (2009), Oxford University Press: Oxford University Press Oxford, England · Zbl 1215.00003
[10] Martin, M. T.; Plastino, A.; Rosso, O. A., Generalized statistical complexity measures: geometrical and analytical properties, Physica A, 369, 439-462 (2006)
[11] Vedral, V., Classical correlations and entanglement in quantum measurements, Phys. Rev. Lett., 90, Article 050401 pp. (2003)
[12] Li, N.; Luo, S., Classical states versus separable states, Phys. Rev. A, 78, Article 024303 pp. (2008)
[13] Bellomo, G.; Plastino, A.; Plastino, A. R., Classical extension of quantum-correlated separable states, Int. J. Quantum Inf., 13, Article 1550015 pp. (2015) · Zbl 1320.81025
[14] López-Ruiz, R., Complexity in some physical systems, Int. J. Bifurc. Chaos, 11, 2669-2673 (2001)
[15] Sañudo, J.; López-Ruiz, R., Calculation of statistical entropic measures in a model of solids, Phys. Lett. A, 376, 2288-2291 (2012)
[16] Huang, Kerson, Statistical Mechanics (1987), Wiley: Wiley USA · Zbl 1041.82500
[17] Pathria, R. K., Statistical Mechanics (1996), Butterworth-Heinemann: Butterworth-Heinemann Oxford, UK · Zbl 0862.00007
[18] Mattuck, R. D., A Guide to Feynman Diagrams in the Many Body Problem (1967), McGraw Hill: McGraw Hill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.