×

Rossby wave extra invariant in the Galerkin approximation. (English) Zbl 1375.76211

Summary: The non-linear system of Rossby waves or plasma drift waves is known to have a unique adiabatic-like extra invariant in addition to the energy and enstrophy. This invariant is physically significant because its presence implies the generation of zonal flow. The latter is known to slow down the anomalous transport of temperature and particles in nuclear fusion with magnetic confinement. However, the derivation of the extra invariant – unlike the energy and enstrophy – is based on the continuum of resonances, while in numerical simulations there are only finite number of resonances. We show that precisely the same invariant takes place in the Galerkin approximations (even of low order, with a few ODEs). To show this, we make variation of boundary conditions, when the solution is periodic in different directions. We also simplify the derivation of the extra conservation.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
82D10 Statistical mechanics of plasmas
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rossby, C. G., Planetary flow patterns in the atmosphere, Q. J. R. Meteorol. Soc., 66, 68 (1939)
[2] Charney, J. G., On the scale of atmospheric motions, Geophys. Publ. Oslo, 17, 1-17 (1948)
[3] Hasegawa, A.; Mima, K., Pseudo-three-dimensional turbulence in magnetized nonuniform plasma, Phys. Fluids, 21, 87-92 (1978) · Zbl 0374.76046
[4] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics. Fundamentals and Large-Scale Circulation (2006), Cambridge · Zbl 1374.86002
[5] Horton, W., Turbulent Transport in Magnetized Plasmas (2012), World Scientific · Zbl 1369.82001
[6] Gilman, P. A., Magnetohydrodynamic “shallow water” equations for the solar tachocline, Astrophys. J., 544, L79-L82 (2000)
[7] Braginsky, S. I., Formation of the stratified ocean of the core: a ternary alloy model, Earth Planet. Sci. Lett., 253, 507-512 (2007)
[8] Hughes, D. W.; Rosner, R.; Weiss, N. O., The Solar Tachocline (2007), Cambridge University Press
[9] Schecter, D. A.; Boyd, J. F.; Gilman, P. A., “Shallow water” magnetohydrodynamic waves in the solar tachocline, Astrophys. J., 551, L185-L188 (2001)
[10] Zaqarashvili, T. V.; Oliver, R.; Ballester, J. L.; Shergelashvili, B. M., Rossby waves in “shallow water” magnetohydrodynamics, Astron. Astrophys., 470, 815-820 (2007) · Zbl 1126.85001
[11] Balk, A. M., Large-scale quasi-geostrophic magnetohydrodynamics, Astrophys. J., 796, 143 (2014)
[12] Balk, A. M.; Nazarenko, S. V.; Zakharov, V. E., New invariant for drift turbulence, Phys. Lett. A, 152, 276-280 (1991)
[13] Balk, A. M., A new invariant for Rossby wave systems, Phys. Lett. A, 155, 20-24 (1991)
[14] Balk, A. M.; van Heerden, F., Conservation style of the extra invariant for Rossby waves, Physica D, 223, 109-120 (2006) · Zbl 1200.86003
[15] Balk, A. M.; Ferapontov, E. V., Invariants of wave systems and web geometry, (Zakharov, V. E., Nonlinear Waves and Weak Turbulence. Nonlinear Waves and Weak Turbulence, Amer. Math. Soc. Transl. Ser. 2, vol. 182 (1998)), 1-30 · Zbl 0913.76008
[16] Balk, A. M., Angular distribution of Rossby wave energy, Phys. Lett. A, 345, 154-160 (2005) · Zbl 1345.76021
[17] Nazarenko, S.; Quinn, B., Triple cascade behavior in quasigeostrophic and drift turbulence and generation of zonal jets, Phys. Rev. Lett., 103, Article 118501 pp. (2009)
[18] L’vov, V. S.; Pomyalov, A.; Procaccia, I.; Rudenko, O., Finite-dimensional turbulence of planetary waves, Phys. Rev. E, 80, Article 066319 pp. (2009)
[19] Bustamante, M. D.; Hayat, U., Complete classification of discrete resonant Rossby/drift wave triads on periodic domains, Commun. Nonlinear Sci. Numer. Simul., 18, 9, 2402-2419 (2013) · Zbl 1310.35058
[20] Zakharov, V. E.; Shul’man, E. I., Degenerative dispersion laws, motion invariants, and kinetic equations, Physica D, 10, 192-202 (1980) · Zbl 1194.37162
[21] Saito, I.; Ishioka, K., A procedure to find a discrete counterpart of a quasi-invariant for two-dimensional beta-plane turbulence, Theor. Appl. Mech. Japan, 62, 13-30 (2014)
[22] Shulman, E. I., Additional integrals of the motion of classical Hamiltonian wave systems, Theor. Math. Phys., 76, 1, 88-99 (1988)
[23] Balk, A. M.; van Heerden, F.; Weichman, P. B., Rotating shallow water dynamics: extra invariant and the formation of zonal jets, Phys. Rev. E, 83, Article 046320 pp. (2011)
[24] Balk, A. M., The Rossby wave extra invariant in the dynamics of 3D fluid layers and the generation of zonal jets, Nonlinear Process. Geophys., 21, 49-59 (2014)
[25] Blaschke, W., Topological Differential Geometry (1932), Chicago University Press
[26] Milewski, P. A.; Tabak, E. G., A pseudospectral procedure for the solution of nonlinear wave equations with examples from free-surface flows, SIAM J. Sci. Comput., 21, 3, 1102-1114 (1999) · Zbl 0953.65073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.