×

zbMATH — the first resource for mathematics

A skeleton of collision dynamics: hierarchical network structure among even-symmetric steady pulses in binary fluid convection. (English) Zbl 1375.76179

MSC:
76R10 Free convection
76R05 Forced convection
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37L99 Infinite-dimensional dissipative dynamical systems
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, Homoclinic snaking in a semiconductor-based optical system, Phys. Rev. Lett., 101 (2008), 253902.
[2] O. Batiste, E. Knobloch, A. Alonso, and I. Mercader, Spatially localized binary-fluid convection, J. Fluid Mech., 560 (2006), pp. 149–158. · Zbl 1122.76029
[3] C. Beaume, A. Bergeon, and E. Knobloch, Convectons and secondary snaking in three-dimensional natural doubly diffusive convection, Phys. Fluids, 25 (2013), 024105.
[4] C. J. Budd and R. Kuske, Localized periodic patterns for the non-symmetric generalized Swift–Hohenberg equation, Phys. D, 208 (2005), pp. 73–95. · Zbl 1073.35037
[5] J. Burke and J. H. P. Dawes, Localized states in an extended Swift–Hohenberg equation, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 261–284, http://dx.doi.org/10.1137/110843976 doi:10.1137/110843976. · Zbl 1242.35047
[6] F. H. Busse, The stability of finite amplitude cellular convection and its relation to an extremum principle, J. Fluid Mech., 30 (1964), pp. 625–649. · Zbl 0159.28202
[7] M. Chantry and R. R. Kerswell, Localization in a spanwise-extended model of plane Couette flow, Phys. Rev. E, 91 (2015), 043005.
[8] S. J. Chapman and G. Kozyreff, Exponential asymptotics of localised patterns and snaking bifurcation diagrams, Phys. D, 238 (2009), pp. 319–354. · Zbl 1156.37321
[9] P. Coullet, Localized patterns and fronts in nonequilibrium systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), pp. 2445–2457. · Zbl 1051.82511
[10] J. H. P. Dawes, The emergence of a coherent structure for coherent structures: Localized states in nonlinear systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368 (2010), pp. 3519–3534. · Zbl 1202.37112
[11] A. D. Dean, P. C. Matthews, S. M. Cox, and J. R. King, Exponential asymptotics of homoclinic snaking, Nonlinearity, 24 (2011), pp. 3323–3351. · Zbl 1241.35017
[12] R. Heinrichs, G. Ahlers, and D. S. Cannell, Traveling waves and spatial variation in the convection of a binary mixture, Phys. Rev. A, 35 (1987), pp. 2761–2764.
[13] P. Huerre and P. A. Monkewitz, Local and global instabilities in spatially developing flows, Annu. Rev. Fluid Mech., 22 (1990), pp. 473–537. · Zbl 0734.76021
[14] E. Knobloch, Spatial localization in dissipative systems, Ann. Rev. Condens. Matter Phys., 6 (2015), pp. 325–359.
[15] J. Knobloch, D. J. B. Lloyd, B. Sandstede, and T. Wagenknecht, Isolas of \textup2-pulse solutions in homoclinic snaking, J. Dynam. Differential Equations, 23 (2011), pp. 93–114. · Zbl 1222.34040
[16] P. Kolodner, Collisions between pulses of traveling-wave convection, Phys. Rev. A, 44 (1991), pp. 6466–6479.
[17] P. Kolodner, D. Bensimon, and C. M. Surko, Traveling-wave convection in an annulus, Phys. Rev. Lett., 60 (1988), pp. 1723–1726.
[18] D. J. B. Lloyd, C. Gollwitzer, I. Rehberg, and R. Richter, Homoclinic snaking near the surface instability of a polarizable fluid, J. Fluid Mech., 783 (2015), pp. 283–305. · Zbl 1382.76291
[19] D. Lo Jacono, A. Bergeon, and E. Knobloch, Three-dimensional spatially localized binary-fluid convection in a porous medium, J. Fluid Mech., 730 (2013), R2. · Zbl 1291.76295
[20] I. Mercader, O. Batiste, A. Alonso, and E. Knobloch, Travelling convectons in binary fluid convection, J. Fluid Mech., 722 (2013), pp. 240–266. · Zbl 1287.76105
[21] J. Michael and T. Thompson, Advances in shell buckling: Theory and experiments, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530001.
[22] E. Moses, J. Fineberg, and V. Steinberg, Multistability and confined traveling-wave patterns in a convecting binary mixture, Phys. Rev. A, (1987), pp. 2757–2760.
[23] J. J. Niemela, G. Ahlers, and D. S. Cannell, Localized traveling-wave states in binary-fluid convection, Phys. Rev. Lett., 64 (1990), pp. 1365–1368.
[24] Y. Nishiura, T. Teramoto, and K. Ueda, Dynamic transitions through scattors in dissipative systems, Chaos, 13 (2003), pp. 962–972.
[25] Y. Nishiura, T. Teramoto, and K. Ueda, Scattering and separators in dissipative systems, Phys. Rev. E, 67 (2003), 056210.
[26] Y. Nishiura, T. Teramoto, and K. Ueda, Scattering of traveling spots in dissipative system, Chaos, 15 (2005), 047509. · Zbl 1144.37393
[27] J. K. Platten, The Soret effect: A review of recent experimental results, J. Appl. Mech., 73 (2006), pp. 5–15. · Zbl 1111.74593
[28] J. K. Platten and J. C. Legros, Convection in Liquids, Springer, New York, 1984. · Zbl 0545.76048
[29] Y. Pomeau, Front motion, metastability and subcritical bifurcations in hydrodynamics, Phys. D, 23 (1986), pp. 3–11.
[30] C. C. T. Pringle, A. P. Willis, and R. R. Kerswell, Fully localised nonlinear energy growth optimals in pipe flow, Phys. Fluids, 27 (2015), 064102. · Zbl 1326.76043
[31] T. M. Schneider, J. F. Gibson, and J. Burke, Snakes and ladders: Localized solutions of plane Couette flow, Phys. Rev. Lett., 104 (2010), 104501.
[32] H. Susanto and P. C. Matthews, Variational approximations to homoclinic snaking, Phys. Rev. E, 83 (2011), 035201.
[33] T. Teramoto, K. Ueda, and Y. Nishiura, Phase-dependent output of scattering process for traveling breathers, Phys. Rev. E, 69 (2004), 056224.
[34] K. Toyabe, Collision Dynamics of Localized Convection Cells in Binary Fluid Mixtures: Network Structure of Collision Orbit, master’s thesis, Graduate School of Science, Hokkaido University, 2009 (in Japanese).
[35] P. B. Umbanhowar, F. Melo, and H. L. Swinney, Localized excitations in a vertically vibrated granular layer, Nature, 382 (1996), pp. 793–796.
[36] T. Watanabe, M. Iima, and Y. Nishiura, Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection, J. Fluid Mech., 712 (2012), pp. 219–243. · Zbl 1275.76095
[37] T. Watanabe, K. Toyabe, M. Iima, and Y. Nishiura, Time-periodic traveling solutions of localized convection cells in binary fluid mixture, Theoret. Appl. Mech. Japan, 59 (2010), pp. 211–219.
[38] P. D. Woods and A. R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Phys. D, 129 (1999), pp. 147–170. · Zbl 0952.37009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.