×

Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrödinger equation. (English) Zbl 1375.35505

Summary: In this paper, we study integrable multilayer spin systems, namely, the multilayer M-LIII equation. We investigate their relation with the geometric flows of interacting curves and surfaces in some space \(\mathbb R^n\). Then we present their Lakshmanan equivalent counterparts. We show that these equivalent counterparts are, in fact, the vector nonlinear Schrödinger equation (NLSE). It is well known that the vector NLSE is equivalent to the \(\Gamma\)-spin system. Also, we have presented the transformations which give the relation between solutions of the \(\Gamma\)-spin system and the multilayer M-LIII equation. It is interesting to note that the integrable multilayer M-LIII equation contains constant magnetic field H. It seems that this constant magnetic vector plays an important role in the theory of “integrable multilayer spin system” and in nonlinear dynamics of magnetic systems. Finally, we present some classes of integrable models of interacting vortices.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations
53A04 Curves in Euclidean and related spaces
35Q82 PDEs in connection with statistical mechanics
82D40 Statistical mechanics of magnetic materials
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gutshabash, E. Sh., Zapiski Nauqnyh Seminarov POMI269 (2000) 164-179.
[2] Huang, N.-N. and Xu, B., Commun. Theor. Phys.12 (1989) 121-126.
[3] Nugmanova, G., Zhunussova, Z., Yesmakhanova, K., Mamyrbekova, G. and Myrzakulov, R., Int. J. Math., Comput., Statist., Nat. Phys. Engrg.9(8) (2015) 328-331.
[4] He, J.-S., Cheng, Y. and Li, Y.-S., Commun. Theor. Phys.38 (2002) 493-496.
[5] Saleem, U. and Hasan, M., J. Phys. A: Math. Theor.43 (2010) 045204.
[6] Lakshmanan, M., Philos. Trans. Roy. Soc. A369 (2011) 1280-1300.
[7] Lakshmanan, M., Phys. Lett. A64 (1977) 53-54.
[8] Takhtajan, L. A., Phys. Lett. A64 (1977) 235-238.
[9] Senthilkumar, C., Lakshmanan, M., Grammaticos, B. and Ramani, A., Phys. Lett. A356 (2006) 339-345.
[10] Ishimori, Y., Progr. Theor. Phys.72 (1984) 33.
[11] Myrzakulov, R., Vijayalakshmi, S., Nugmanova, G. and Lakshmanan, M., Phys. Lett. A233(14-6) (1997) 391-396. · Zbl 1044.37537
[12] Myrzakulov, R., Vijayalakshmi, S., Syzdykova, R. and Lakshmanan, M., J. Math. Phys.39 (1998) 2122-2139.
[13] Myrzakulov, R., Lakshmanan, M., Vijayalakshmi, S. and Danlybaeva, A., J. Math. Phys.39 (1998) 3765-3771.
[14] Myrzakulov, R., Danlybaeva, A. K. and Nugmanova, G. N., Theor. Math. Phys.118(13) (1999) 441-451.
[15] Myrzakulov, R., Nugmanova, G. and Syzdykova, R., J. Phys. A: Math. Theor.31(147) (1998) 9535-9545.
[16] Myrzakulov, R., Daniel, M. and Amuda, R., Physica A234(13-4) (1997) 715-724.
[17] Myrzakulov, R., Makhankov, V. G. and Pashaev, O., Lett. Math. Phys.16(1) (1989) 83-92.
[18] Myrzakulov, R., Makhankov, V. G. and Makhankov, A., Physica Scripta35(3) (1987) 233-237.
[19] Myrzakulov, R., Pashaev, O. and Kholmurodov, Kh., Physica Scripta33(4) (1986) 378-384.
[20] Anco, S. C. and Myrzakulov, R., J. Geom. Phys.60 (2010) 1576-1603.
[21] Myrzakulov, R., Rahimov, F. K., Myrzakul, K. and Serikbaev, N. S., On the geometry of stationary Heisenberg ferromagnets, in Nonlinear Waves: Classical and Quantum Aspects (Kluwer Academic Publishers, Dordrecht, Netherlands, 2004), pp. 543-549. · Zbl 1099.35536
[22] Myrzakulov, R., Serikbaev, N. S., Myrzakul, K. and Rahimov, F. K., On continuous limits of some generalized compressible Heisenberg spin chains, J. NATO Sci. Ser. II. Math., Phys. Chem.153 (2004) 535-542. · Zbl 1099.35537
[23] Myrzakulov, R., Mamyrbekova, G. K., Nugmanova, G. N. and Lakshmanan, M., Symmetry7(3) (2015) 1352-1375, arXiv:1305.0098.
[24] Myrzakulov, R., Mamyrbekova, G. K., Nugmanova, G. N., Yesmakhanova, K. and Lakshmanan, M., Phys. Lett. A378(30-31) (2014) 2118-2123, arXiv:1404.2088.
[25] Myrzakulov, R., Martina, L., Kozhamkulov, T. A. and Myrzakul, K., Integrable Heisenberg ferromagnets and soliton geometry of curves and surfaces, in Nonlinear Physics: Theory and Experiment II (World Scientific, London, 2003), pp. 248-253. · Zbl 1053.82503
[26] Myrzakulov, R., Integrability of the Gauss-Codazzi-Mainardi equation in \(2 + 1\) dimensions, in Mathematical Problems of Nonlinear Dynamics, Proc. of the Int. Conf. Progress in Nonlinear Sciences, Nizhny Novgorod, Russia, , July 2-6, 2001, V. 1 (2001), pp. 314-319.
[27] Chi, C. and Zi-Xiang, Z., Darboux tranformation and exact solutions of the Myrzakulov-I equations, Chinese Phys. Lett.26(8) (2009) 080504.
[28] Hai, C. and Zi-Xiang, Z., Darboux transformation with a double spectral parameter for the Myrzakulov-I equation, Chinese Phys. Lett.31(12) (2014) 120504.
[29] Yan, Z.-W., Chen, M.-R., Wu, K. and Zhao, W.-Z., J. Phys. Soc. Japan81 (2012) 094006.
[30] Yan, Z.-W., Chen, M.-R., Wu, K. and Zhao, W.-Z., Commun. Theor. Phys.58 (2012) 463-468.
[31] K. R. Ysmakhanova, G. N. Nugmanova, W.-Z. Zhao and K. Wu, Integrable inhomogeneous Lakshmanan-Myrzakulov equation arXiv:nlin/0604034.
[32] Z.-H. Zhang, M. Deng, W.-Z. Zhao and K. Wu, On the integrable inhomogeneous Myrzakulov-I equation, arXiv:nlin/0603069.
[33] Martina, L., Myrzakul, K., Myrzakulov, R. and Soliani, G., J. Math. Phys.42(13) (2001) 1397-1417.
[34] Wu, X.-Y., Tian, B., Zhen, H.-L., Sun, W.-R. and Sun, Y., J. Mod. Opt.63(6) (2015) 590-597.
[35] Yersultanova, Z. S., Zhassybayeva, M., Yesmakhanova, K., Nugmanova, G. and Myrzakulov, R., Int. J. Geom. Meth. Mod. Phys.13(1) (2016) 1550134, arXiv:1404.2270.
[36] Bordag, L. A. and Yanovski, A. B., J. Phys. A: Math. Gen.28 (1995) 4007-4013.
[37] Bordag, L. A. and Yanovski, A. B., J. Phys. A: Math. Gen.29 (1996) 5575-5590.
[38] Kostov, N. A., Dandoloff, R., Gerdjikov, V. S. and Grahovski, G. G., The Manakov system as two moving interacting curves, in Proc. Int. Workshop Complex Structures and Vector Fields, August 21-26, 2006, Sofia, Bulgaria, . eds.: Sekigawa, K. and Dimiev, S. (World Scientific, 2007). · Zbl 1142.35086
[39] Myrzakul, A., Integrability of two coupled curves and geometrically equivalent spin analogue of the Manakov equation, VestnikENU(2) (2016) 95-99.
[40] Myrzakul, A., Equivalence between the coupled M-LIII equation and the \(\Gamma \)-spin system, VestnikENU(3) (2016) 89-94.
[41] Akbota, M., Gauge equivalence between the coupled M-LIII equation and the Manakov system, VestnikENU(1) (2016) 54-60.
[42] Myrzakul, A. and Myrzakulov, R., Motion of two interacting curves and surfaces: Integrable reductions and soliton equations, VestnikENU(4) (2014) 45-57.
[43] Myrzakul, A. and Myrzakulov, R., Integrable motion of two interacting curves and Heisenberg ferromagnetic equations, in Abstracts of XVIII-th Int. Confer. Geometry, Integrability and Quantization, June 3-8, 2016, Bulgaria, . · Zbl 1375.35439
[44] Myrzakul, A. and Myrzakulov, R., Integrable motion of two interacting curves, spin systems and the Manakov system, Int. J. Geom. Meth. Mod. Phys.14(7) (2017) 1750115, 15 pp. · Zbl 1375.35439
[45] A. Myrzakul and R. Myrzakulov, Darboux transformations and exact soliton solutions of integrable coupled spin systems related with the Manakov system, arXiv:1607.08151. · Zbl 1375.35439
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.