×

Dynamic evolution evoked by external inputs in memristor-based wavelet neural networks with different memductance functions. (English) Zbl 1375.34026

Summary: In this paper, we present a preliminary study concerning the dynamic flows in memristor-based wavelet neural networks with continuous feedback functions and discontinuous feedback functions in the presence of different memductance functions. The theoretical studies as well as the computer simulations confirm our claim. The analysis can characterize the fundamental electrical properties of memristor devices and provide convenience for applications.

MSC:

34A36 Discontinuous ordinary differential equations
37N35 Dynamical systems in control
68T05 Learning and adaptive systems in artificial intelligence
94C05 Analytic circuit theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cantley KD, Subramaniam A, Stiegler HJ, Chapman RA, Vogel EM: Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses.IEEE Trans. Nanotechnol. 2011,10(5):1066-1073. · doi:10.1109/TNANO.2011.2105887
[2] Cantley KD, Subramaniam A, Stiegler HJ, Chapman RA, Vogel EM: Neural learning circuits utilizing nano-crystalline silicon transistors and memristors.IEEE Trans. Neural Netw. Learn. Syst. 2012,23(4):565-573. · doi:10.1109/TNNLS.2012.2184801
[3] Itoh M, Chua LO: Memristor cellular automata and memristor discrete-time cellular neural networks.Int. J. Bifurc. Chaos 2009,19(11):3605-3656. · Zbl 1182.37014 · doi:10.1142/S0218127409025031
[4] Kim H, Sah MP, Yang CJ, Roska T, Chua LO: Neural synaptic weighting with a pulse-based memristor circuit.IEEE Trans. Circuits Syst. I, Regul. Pap. 2012,59(1):148-158. · Zbl 1468.94668 · doi:10.1109/TCSI.2011.2161360
[5] Pershin YV, Di Ventra M: Experimental demonstration of associative memory with memristive neural networks.Neural Netw. 2010,23(7):881-886. · doi:10.1016/j.neunet.2010.05.001
[6] Wen SP, Zeng ZG: Dynamics analysis of a class of memristor-based recurrent networks with time-varying delays in the presence of strong external stimuli.Neural Process. Lett. 2012,35(1):47-59. · doi:10.1007/s11063-011-9203-z
[7] Wu AL, Zeng ZG: Exponential stabilization of memristive neural networks with time delays.IEEE Trans. Neural Netw. Learn. Syst. 2012,23(12):1919-1929. · Zbl 1244.28014 · doi:10.1109/TNNLS.2012.2219554
[8] Wu AL, Zeng ZG: Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays.Neural Netw. 2012, 36:1-10. · Zbl 1258.34165 · doi:10.1016/j.neunet.2012.08.009
[9] Wu AL, Zeng ZG: Anti-synchronization control of a class of memristive recurrent neural networks.Commun. Nonlinear Sci. Numer. Simul. 2013,18(2):373-385. · Zbl 1279.94157 · doi:10.1016/j.cnsns.2012.07.005
[10] Huang TW: Robust stability of delayed fuzzy Cohen-Grossberg neural networks.Comput. Math. Appl. 2011,61(8):2247-2250. · Zbl 1219.93094 · doi:10.1016/j.camwa.2010.09.037
[11] Huang TW, Li CD, Duan SK, Starzyk JA: Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects.IEEE Trans. Neural Netw. Learn. Syst. 2012,23(6):866-875. · doi:10.1109/TNNLS.2012.2192135
[12] Jiang F, Shen Y: Stability in the numerical simulation of stochastic delayed Hopfield neural networks.Neural Comput. Appl. 2013,22(7-8):1493-1498. · doi:10.1007/s00521-012-0935-0
[13] Jiang, F.; Yang, H.; Shen, Y., On the robustness of global exponential stability for hybrid neural networks with noise and delay perturbations (2013)
[14] Shen Y, Wang J: Almost sure exponential stability of recurrent neural networks with Markovian switching.IEEE Trans. Neural Netw. 2009,20(5):840-855. · doi:10.1109/TNN.2009.2015085
[15] Shen Y, Wang J: Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances.IEEE Trans. Neural Netw. Learn. Syst. 2012,23(1):87-96. · doi:10.1109/TNNLS.2011.2178326
[16] Song XG, Gao HB, Ding L, Liu DY, Hao MH: The globally asymptotic stability analysis for a class of recurrent neural networks with delays.Neural Comput. Appl. 2013,22(3-4):587-595. · doi:10.1007/s00521-012-0888-3
[17] Gao HB, Song XG, Ding L, Liu DY, Hao MH: New conditions for global exponential stability of continuous-time neural networks with delays.Neural Comput. Appl. 2013,22(1):41-48. · doi:10.1007/s00521-011-0745-9
[18] Wang LL, Chen TP: Multistability of neural networks with Mexican-hat-type activation functions.IEEE Trans. Neural Netw. Learn. Syst. 2012,23(11):1816-1826. · doi:10.1109/TNNLS.2012.2210732
[19] Yu W, Francisco PC, Li XO: Two-stage neural sliding mode control of magnetic levitation in minimal invasive surgery.Neural Comput. Appl. 2011,20(8):1141-1147. · doi:10.1007/s00521-010-0477-2
[20] Yu W, Li XO: Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing.Int. J. Neural Syst. 2010,20(5):429-435. · doi:10.1142/S0129065710002516
[21] Zhang HG, Liu JH, Ma DZ, Wang ZS: Data-core-based fuzzy min-max neural network for pattern classification.IEEE Trans. Neural Netw. 2011,22(12):2339-2352. · doi:10.1109/TNN.2011.2175748
[22] Zhang HG, Ma TD, Huang GB, Wang ZL: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control.IEEE Trans. Syst. Man Cybern., Part B, Cybern. 2010,40(3):831-844. · doi:10.1109/TSMCB.2009.2030506
[23] Zhang HG, Wang YC: Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays.IEEE Trans. Neural Netw. 2008,19(2):366-370. · doi:10.1109/TNN.2007.910738
[24] Bao G, Zeng ZG: Analysis and design of associative memories based on recurrent neural network with discontinuous activation functions.Neurocomputing 2012,77(1):101-107. · doi:10.1016/j.neucom.2011.08.026
[25] Huang YJ, Zhang HG, Wang ZS: Multistability and multiperiodicity of delayed bidirectional associative memory neural networks with discontinuous activation functions.Appl. Math. Comput. 2012,219(3):899-910. · Zbl 1291.34115 · doi:10.1016/j.amc.2012.06.068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.