×

zbMATH — the first resource for mathematics

Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. (English) Zbl 1374.76084
Summary: The present paper investigates the influence of dense gases governed by complex equations of state on the dynamics of homogeneous isotropic turbulence. In particular, we investigate how differences due to the complex thermodynamic behaviour and transport properties affect the small-scale structures, viscous dissipation and enstrophy generation. To this end, we carry out direct numerical simulations of the compressible Navier-Stokes equations supplemented by advanced dense gas constitutive models. The dense gas considered in the study is a heavy fluorocarbon (PP11) that is shown to exhibit an inversion zone (i.e. a region where the fundamental derivative of gas dynamics \(\Gamma\) is negative) in its vapour phase, for pressures and temperatures of the order of magnitude of the critical ones. Simulations are carried out at various initial turbulent Mach numbers and for two different initial thermodynamic states, one immediately outside and the other inside the inversion zone. After investigating the influence of dense gas effects on the time evolution of mean turbulence properties, we focus on the statistical properties of turbulent structures. For that purpose we carry out an analysis in the plane of the second and third invariant of the deviatoric strain-rate tensor. The analysis shows a weakening of compressive structures and an enhancement of expanding ones. Strong expansion regions are found to be mostly populated by non-focal convergence structures typical of strong compression regions, in contrast with the perfect gas that is dominated by eddy-like structures. Additionally, the contribution of non-focal expanding structures to the dilatational dissipation is comparable to that of compressed structures. This is due to the occurrence of steep expansion fronts and possibly of expansion shocklets which contribute to enstrophy generation in strong expansion regions and that counterbalance enstrophy destruction by means of the eddy-like structures.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76N15 Gas dynamics, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, W. K., Numerical study on using sulfur hexafluoride as a wind tunnel test gas, AIAA J., 29, 12, 2179-2180, (1991)
[2] Ashurst, W. T.; Kerstein, A. R.; Kerr, R. M.; Gibson, C. H., Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids, 30, 8, 2343-2353, (1987)
[3] Aubard, G.; Gloerfelt, X.; Robinet, J. C., Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction, AIAA J., 51, 10, 2395-2409, (2013)
[4] Bethe, H. A.1942 The theory of shock waves for an arbitrary equation of state. Tech. Rep. 545, Office of Scientific Research and Development.
[5] Blackburn, H. M.; Mansour, N. N.; Cantwell, B. J., Topology of fine-scale motions in turbulent channel flow, J. Fluid Mech., 310, 269-292, (1996) · Zbl 0864.76036
[6] Blaisdell, G. A.; Mansour, N. N.; Reynolds, W. C., Compressibility effects on the growth and structure of homogeneous turbulent shear flow, J. Fluid Mech., 256, 443-485, (1993) · Zbl 0800.76186
[7] Bogey, C.; Bailly, C., A family of low dispersive and low dissipative explicit schemes for flow and noise computations, J. Comput. Phys., 194, 1, 194-214, (2004) · Zbl 1042.76044
[8] Bogey, C.; Bailly, C., Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation, J. Fluid Mech., 627, 129-160, (2009) · Zbl 1171.76396
[9] Bogey, C.; De Cacqueray, N.; Bailly, C., A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations, J. Comput. Phys., 228, 5, 1447-1465, (2009) · Zbl 1263.76046
[10] Bogey, C.; Marsden, O.; Bailly, C., Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105, J. Fluid Mech., 701, 352-385, (2012) · Zbl 1248.76125
[11] Brown, B. P.; Argrow, B. M., Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines, J. Propul. Power, 16, 6, 1118-1124, (2000)
[12] Cantwell, B. J., On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence, Phys. Fluids A, 5, 8, 2008-2013, (1993) · Zbl 0794.76044
[13] Chong, M. S.; Perry, A. E.; Cantwell, B. J., A general classification of three-dimensional flow fields, Phys. Fluids A, 2, 5, 765-777, (1990)
[14] Chong, M. S.; Soria, J.; Perry, A. E.; Chacin, J.; Cantwell, B. J.; Na, Y., Turbulence structures of wall-bounded shear flows found using DNS data, J. Fluid Mech., 357, 225-247, (1998) · Zbl 0908.76039
[15] Chung, T. H.; Ajlan, M.; Lee, L. L.; Starling, K. E., Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Engng Chem. Res., 27, 4, 671-679, (1988)
[16] Chung, T. H.; Lee, L. L.; Starling, K. E., Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity, Ind. Engng Chem. Fundam., 23, 1, 8-13, (1984)
[17] Cinnella, P.; Congedo, P. M., Inviscid and viscous aerodynamics of dense gases, J. Fluid Mech., 580, 179-217, (2007) · Zbl 1113.76046
[18] Cramer, M. S., Negative nonlinearity in selected fluorocarbons, Phys. Fluids A, 1, 1894-1897, (1989)
[19] Cramer, M. S., Shock splitting in single-phase gases, J. Fluid Mech., 199, 281-296, (1989) · Zbl 0659.76075
[20] Cramer, M. S.1991Nonclassical dynamics of classical gases. In Nonlinear Waves in Real Fluids, pp. 91-145. Springer. doi:10.1007/978-3-7091-2608-0_5 · Zbl 0723.76078
[21] Cramer, M. S., Numerical estimates for the bulk viscosity of ideal gases, Phys. Fluids, 24, (2012)
[22] Cramer, M. S.; Kluwick, A., On the propagation of waves exhibiting both positive and negative nonlinearity, J. Fluid Mech., 142, 9-37, (1984) · Zbl 0577.76073
[23] Cramer, M. S.; Tarkenton, G. M., Transonic flows of Bethe-Zel’dovich-Thompson fluids, J. Fluid Mech., 240, 197-228, (1992) · Zbl 0775.76004
[24] Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys., 152, 2, 517-549, (1999) · Zbl 0955.76045
[25] Erlebacher, G.; Sarkar, S., Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence, Phys. Fluids A, 5, 12, 3240-3254, (1993) · Zbl 0805.76025
[26] Gloerfelt, X.; Berland, J., Turbulent boundary-layer noise: direct radiation at Mach number 0.5, J. Fluid Mech., 723, 318-351, (2013) · Zbl 1287.76199
[27] Guardone, A.; Argrow, B. M., Nonclassical gasdynamic region of selected fluorocarbons, Phys. Fluids, 17, 11, (2005) · Zbl 1188.76058
[28] Harinck, J.; Turunen-Saaresti, T.; Colonna, P.; Rebay, S.; Van Buijtenen, J., Computational study of a high-expansion ratio radial organic Rankine cycle turbine stator, Trans. ASME J. Gas Turbines Power, 132, 5, (2010)
[29] Horen, J.; Talonpoika, T.; Larjola, J.; Siikonen, T., Numerical simulation of real-gas flow in a supersonic turbine nozzle ring, Trans. ASME J. Engng Gas Turbines Power, 124, 2, 395-403, (2002)
[30] Jagannathan, S.; Donzis, D. A., Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations, J. Fluid Mech., 789, 669-707, (2016)
[31] Kevlahan, N., Mahesh, K. & Lee, S.1992Evolution of the shock front and turbulence structures in the shock/turbulence interaction. In Studying Turbulence Using Numerical Simulation Databases, vol. 1, pp. 277-292. Center for Turbulence Research.
[32] Kida, S.; Orszag, S. A., Enstrophy budget in decaying compressible turbulence, J. Sci. Comput., 5, 1-34, (1989) · Zbl 0712.76052
[33] Kirillov, N., Analysis of modern natural gas liquefaction technologies, Chem. Petrol. Engng, 40, 7-8, 401-406, (2004)
[34] Kovasznay, L. S. G., Turbulence in supersonic flow, J. Aeronaut. Soc., 20, 657-682, (1953) · Zbl 0051.42201
[35] Lee, K.; Girimaji, S. S.; Kerimo, J., Effect of compressibility on turbulent velocity gradients and small-scale structure, J. Turbul., 10, (2009)
[36] Lee, S.; Lele, S. K.; Moin, P., Eddy shocklets in decaying compressible turbulence, Phys. Fluids A, 3, 657-664, (1991)
[37] Lemmon, E. W.; Span, R., Short fundamental equations of state for 20 industrial fluids, J. Chem. Engng Data, 51, 3, 785-850, (2006)
[38] Lesieur, M., Turbulence in Fluids, Fluid Mechanics and its Applications, (2008), Springer
[39] Martín, J.; Ooi, A.; Chong, M. S.; Soria, J., Dynamics of the velocity gradient tensor invariants in isotropic turbulence, Phys. Fluids, 10, 9, 2336-2346, (1998) · Zbl 1185.76767
[40] Martin, J. J.; Hou, Y. C., Development of an equation of state for gases, AIChE J., 1, 2, 142-151, (1955)
[41] Monaco, J. F.; Cramer, M. S.; Watson, L. T., Supersonic flows of dense gases in cascade configurations, J. Fluid Mech., 330, 31-59, (1997) · Zbl 0895.76038
[42] Ooi, A.; Martin, J.; Soria, J.; Chong, M. S., A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence, J. Fluid Mech., 381, 141-174, (1999) · Zbl 0965.76031
[43] Passot, T.; Pouquet, A., Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid Mech., 181, 441-466, (1987) · Zbl 0633.76054
[44] Perry, A. E.; Chong, M. S., A description of eddying motions and flow patterns using critical-point concepts, Annu. Rev. Fluid Mech., 19, 1, 125-155, (1987)
[45] Pirozzoli, S.; Grasso, F., Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures, Phys. Fluids, 16, 12, 4386-4407, (2004) · Zbl 1187.76418
[46] Poling, B. E., Prausnitz, J. M., O’Connell, J. P. & Reid, R. C.2001The Properties of Gases and Liquids, vol. 5. McGraw-Hill.
[47] Ristorcelli, J. R.; Blaisdell, G. A., Consistent initial conditions for the DNS of compressible turbulence, Phys. Fluids, 9, 1, 4-6, (1997)
[48] Rusak, Z.; Wang, C., Transonic flow of dense gases around an airfoil with a parabolic nose, J. Fluid Mech., 346, 1-21, (1997) · Zbl 0913.76042
[49] Samtaney, R.; Pullin, D. I.; Kosovic, B., Direct numerical simulation of decaying compressible turbulence and shocklet statistics, Phys. Fluids, 13, 5, 1415-1430, (2001) · Zbl 1184.76474
[50] Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O., The analysis and modelling of dilatational terms in compressible turbulence, J. Fluid Mech., 227, 473-493, (1991) · Zbl 0721.76037
[51] Sciacovelli, L.; Cinnella, P., Numerical study of multistage transcritical organic Rankine cycle axial turbines, J. Gas Turbines Power, 136, 2, (2014)
[52] Sciacovelli, L.; Cinnella, P.; Content, C.; Grasso, F., Dense gas effects in inviscid homogeneous isotropic turbulence, J. Fluid Mech., 800, 140-179, (2016)
[53] Soria, J.; Cantwell, B. J., Topological visualisation of focal structures in free shear flows, Appl. Sci. Res., 53, 3-4, 375-386, (1994) · Zbl 0823.76039
[54] Stryjek, R.; Vera, J. H., PRSV2: a cubic equation of state for accurate vapor – liquid equilibria calculations, Canad. J. Chem. Engng, 64, 5, 820-826, (1986)
[55] Thompson, P. A., A fundamental derivative in gasdynamics, Phys. Fluids, 14, 9, 1843-1849, (1971) · Zbl 0236.76053
[56] Thompson, P. A.; Lambrakis, K. C., Negative shock waves, J. Fluid Mech., 60, 1, 187-208, (1973) · Zbl 0265.76085
[57] Van Der Waals, J. D.1873 Doctoral dissertation. PhD thesis, University of Leiden.
[58] Wang, J.; Shi, Y.; Wang, L.; Xiao, Z.; He, X. T.; Chen, S., Effect of compressibility on the small-scale structures in isotropic turbulence, J. Fluid Mech., 713, 588-631, (2012) · Zbl 1284.76214
[59] Wang, L.; Peters, N., A new view of flow topology and conditional statistics in turbulence, Phil. Trans. R. Soc. Lond. A, 371, 1982, (2013)
[60] Wheeler, A. P. S.; Ong, J., The role of dense gas dynamics on organic Rankine cycle turbine performance, Trans. ASME J. Engng Gas Turbines Power, 135, 10, (2013)
[61] Wheeler, A. P. S. & Ong, J.2014A study of the three-dimensional unsteady real-gas flows within a transonic ORC turbine. In Proceedings of the ASME Turbo Expo 2014, GT2014, June 16-20, 2014, Dusseldorf, Germany. ASME.
[62] Zamfirescu, C.; Dincer, I., Performance investigation of high-temperature heat pumps with various BZT working fluids, Thermochim. Acta, 488, 66-77, (2009)
[63] Zel’Dovich, Y. B.; Raizer, Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, (1966), Academic
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.