×

Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. (English) Zbl 1373.81121

Summary: Quantum communication has attracted much attention in recent years. Deterministic joint remote state preparation (DJRSP) is an important branch of quantum secure communication which could securely transmit a quantum state with 100% success probability. In this paper, we study DJRSP of an arbitrary two-qubit state in noisy environment. Taking a GHZ based DJRSP scheme of a two-qubit state as an example, we study how the scheme is influenced by all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. We demonstrate that there are four different output states in the amplitude-damping noise, while there is the same output state in each of the other three types of noise. The state-independent average fidelity is presented to measure the effect of noise, and it is shown that the depolarizing noise has the worst effect on the DJRSP scheme, while the amplitude-damping noise or the phase-flip has the slightest effect depending on the noise rate. Our results are also suitable for JRSP and RSP.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175-179. IEEE, New York, Bangalore, India (1984) · Zbl 1306.81030
[2] Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[3] Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807 (2001) · doi:10.1103/PhysRevLett.86.5807
[4] Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283(23), 4782 (2010) · doi:10.1016/j.optcom.2010.06.083
[5] Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64(6), 062309 (2001) · doi:10.1103/PhysRevA.64.062309
[6] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979) · Zbl 0414.94021 · doi:10.1145/359168.359176
[7] Xia, Z., Wang, X., Sun, X., Wang, B.: Steganalysis of least significant bit matching using multi-order differences. Secur. Commun. Netw. 7(8), 1283 (2014) · doi:10.1002/sec.864
[8] Xia, Z., Wang, X., Sun, X., Liu, Q., Xiong, N.: Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed. Tools Appl. 75(4), 1947 (2016) · doi:10.1007/s11042-014-2381-8
[9] Guo, P., Wang, J., Li, B., Lee, S.: A variable threshold-value authentication architecture for wireless mesh networks. J. Internet Technol. 15(6), 929 (2014)
[10] Ren, Y., Shen, J., Wang, J., Han, J., Lee, S.: Mutual verifiable provable data auditing in public cloud storage. J. Internet Technol. 16(2), 317 (2015)
[11] Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997) · doi:10.1103/PhysRevLett.79.325
[12] Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340 (2016) · doi:10.1109/TPDS.2015.2401003
[13] Fu, Z., Sun, X., Liu, Q., Zhou, L., Shu, J.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. E98.B(1), 190 (2015) · doi:10.1587/transcom.E98.B.190
[14] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[15] Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000) · doi:10.1103/PhysRevA.62.012313
[16] Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 14302 (2000) · doi:10.1103/PhysRevA.63.014302
[17] Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001) · doi:10.1103/PhysRevLett.87.077902
[18] Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719 (2007) · doi:10.1088/0953-4075/40/18/011
[19] Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008) · Zbl 1156.81329 · doi:10.1088/0953-4075/41/9/095501
[20] Hou, K., Wang, J., Lu, Y.L., Shi, S.H.: Joint remote preparation of a multipartite GHZ-class state. Int. J. Theor. Phys. 48(7), 2005 (2009) · Zbl 1171.81330 · doi:10.1007/s10773-009-9975-3
[21] Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796 (2010) · doi:10.1016/j.optcom.2010.07.043
[22] Nguyen, B.A.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113 (2010) · Zbl 1238.81048 · doi:10.1016/j.optcom.2010.06.016
[23] Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011) · doi:10.1088/0953-4075/44/7/075501
[24] Nguyen, B.A., Cao, T.B., Nung, V.D.: Deterministic joint remote state preparation. Phys. Lett. A 375(41), 3570 (2011) · Zbl 1252.81019 · doi:10.1016/j.physleta.2011.08.045
[25] Chen, Q.Q., Xia, Y., Song, J.: Deterministic joint remote preparation of an arbitrary three-qubit state via EPR pairs. J. Phys. A Math. Theor. 45, 055303 (2012) · Zbl 1235.81033 · doi:10.1088/1751-8113/45/5/055303
[26] Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B At. Mol. Opt. Phys. 45(20), 205506 (2012) · doi:10.1088/0953-4075/45/20/205506
[27] Wang, M.M., Chen, X.B., Yang, Y.X.: Deterministic joint remote preparation of an arbitrary two-qubit state using the cluster state. Commun. Theor. Phys. 59(5), 568 (2013) · doi:10.1088/0253-6102/59/5/09
[28] Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels (2016). arXiv:1608.06071 · Zbl 1373.81184
[29] Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681 (2016) · Zbl 1357.81078 · doi:10.1007/s11128-016-1396-7
[30] Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005) · doi:10.1103/PhysRevA.72.012315
[31] Chen, A.X., Deng, L., Li, J.H., Zhan, Z.M.: Remote preparation of an entangled state in nonideal conditions. Commun. Theor. Phys. 46(2), 221 (2006) · doi:10.1088/0253-6102/46/2/007
[32] Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53(7), 2236 (2014) · Zbl 1298.81036 · doi:10.1007/s10773-014-2024-x
[33] Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441 (2015) · Zbl 1325.81039 · doi:10.1007/s11128-015-1038-5
[34] Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Remote state preparation via a GHZ-class state in noisy environments. J. Phys. B At. Mol. Opt. Phys. 44(11), 115506 (2011) · doi:10.1088/0953-4075/44/11/115506
[35] Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14(10), 3857 (2015) · Zbl 1327.81093 · doi:10.1007/s11128-015-1078-x
[36] Chen, Z.F., Jin-Ming, L.: Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise. Chin. Phys. B 23(2), 020312 (2014) · doi:10.1088/1674-1056/23/2/020312
[37] Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14(9), 3465 (2015) · Zbl 1325.81036 · doi:10.1007/s11128-015-1049-2
[38] Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381(6), 581 (2017) · doi:10.1016/j.physleta.2016.12.021
[39] Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15(11), 4805 (2016) · Zbl 1357.81054 · doi:10.1007/s11128-016-1430-9
[40] Liang, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537 (2003) · doi:10.1088/0253-6102/39/5/537
[41] Rasetti, M., Zanardi, P.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997) · Zbl 1079.81514 · doi:10.1103/PhysRevLett.79.3306
[42] Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008) · doi:10.1103/PhysRevA.78.022321
[43] Rigolin, G., Fortes, R.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92(1), 012338 (2015) · doi:10.1103/PhysRevA.92.012338
[44] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[45] Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594 (1998) · doi:10.1103/PhysRevLett.81.2594
[46] Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-\[1/21/2\] particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988) · doi:10.1103/PhysRevLett.60.1351
[47] Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19(17), 16309 (2011) · doi:10.1364/OE.19.016309
[48] Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117 (2012) · doi:10.1038/nphys2178
[49] Song, W., Yang, M., Cao, Z.L.: Purifying entanglement of noisy two-qubit states via entanglement swapping. Phys. Rev. A 89(1), 014303 (2014) · doi:10.1103/PhysRevA.89.014303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.