×

Born-Infeld-type electrodynamics and magnetic black holes. (English) Zbl 1373.78020

Ann. Phys. 383, 550-559 (2017); corrigendum ibid. 434, Article ID 168625, 2 p. (2021).
Summary: We investigate a Born-Infeld-type model of nonlinear electrodynamics, possessing three parameters, coupled with general relativity. As a particular case Born-Infeld electrodynamics is reproduced. There is no singularity of the electric field at the center of point-like charged particles and self-energy of charges is finite in this model. The magnetized black hole is studied and solutions are obtained. We find the asymptotic of the metric and mass functions at \(r \rightarrow \infty\) and \(r \rightarrow 0\), and corrections to the Reissner-Nordström solution. Thermodynamics of black holes is investigated. We calculate the Hawking temperature of black holes and show that black holes are stable and there are no phase transitions in the model under consideration.

MSC:

78A25 Electromagnetic theory (general)
83C50 Electromagnetic fields in general relativity and gravitational theory
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Born, M.; Infeld, L., Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 144, 425, (1934)
[2] Fradkin, E. S.; Tseytlin, A., Phys. Lett. B, 163, 123, (1985)
[3] Tseytlin, A., Nuclear Phys. B, 276, 391, (1985)
[4] Gitman, D. M.; Shabad, A. E., Eur. Phys. J. C, 74, 3186, (2014), arXiv:1410.2097
[5] Costa, C. V.; Gitman, D. M.; Shabad, A. E., Phys. Scr., 90, 074012, (2015), arXiv:1312.0447
[6] Kruglov, S. I., Ann. Phys. (Berlin), Commun. Theor. Phys., Ann. Phys., 353, 299, (2015), arXiv:1410.0351
[7] Heisenberg, W.; Euler, H., Z. Phys., 98, 714, (1936), arXiv:physics/0605038
[8] Schwinger, J., Phys. Rev., 82, 664, (1951)
[9] Adler, S. L., Ann. Phys., NY, 67, 599, (1971)
[10] Kruglov, S. I., J. Phys. A, 43, 375402, (2010), arXiv:0909.1032
[11] Bardeen, J. M., Proc. Int. Conf. GR5, Tbilisi, 174, (1968)
[12] Dymnikova, I., Gen. Relativity Gravitation, 24, 235, (1992)
[13] Ayón-Beato, E.; Garćia, A., Phys. Rev. Lett., 80, 5056, (1998), arXiv:gr-qc/9911046
[14] Bronnikov, K. A., Phys. Rev. D, 63, 044005, (2001)
[15] Breton, N., Phys. Rev. D, 67, 124004, (2003), arXiv:hep-th/0301254
[16] Hayward, S. A., Phys. Rev. Lett., 96, 31103, (2006), (gr-qc/0506126)
[17] N. Breton, R. Garcia-Salcedo, Nonlinear electrodynamics and black holes, arXiv:hep-th/0702008 · Zbl 1052.83038
[18] Lemos, J. P.S.; Zanchin, V. T., Phys. Rev. D, 83, 124005, (2011), arXiv:1104.4790
[19] Flachi, A.; Lemos, J. P.S., Phys. Rev. D, 87, 024034, (2013), arXiv:1211.6212
[20] Hendi, S. H., Ann. Phys., 333, 282, (2013), arXiv:1405.5359
[21] Balart, L.; Vagenas, E. C., Phys. Rev. D, 90, 124045, (2014), arXiv:1408.0306
[22] Kruglov, S. I., Phys. Rev. D, Europhys. Lett., Ann. Phys. (Berlin), Ann. Phys., 378, 59, (2017), arXiv:1703.02029
[23] Frolov, V. P., Phys. Rev. D, 94, 104056, (2016), arXiv:1609.01758
[24] S.I. Kruglov, Notes on Born-Infeld-type electrodynamics, arXiv:1612.04195 · Zbl 1378.81159
[25] Gaete, P.; Helayl-Neto, J., Eur. Phys. J. C, 74, 3182, (2014), arXiv:1408.3363
[26] Bateman, H.; Erdelyi, A., Higher Transcendental Functions, Vol. 1, (1953), Mc. Graw-Hill Book Company, Inc.
[27] Davies, P. C.W., Rep. Progr. Phys., 41, 1313, (1978)
[28] Shabad, A. E.; Usov, V. V., Phys. Rev. D, 83, 105006, (2011), arXiv:1101.2343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.