×

A computational model of the biochemomechanics of an evolving occlusive thrombus. (English) Zbl 1373.74041

Summary: Blood clots are fundamental to preventing excessive blood loss in cases of vascular injury and to promoting subsequent wound healing, but also to many disease conditions. The biomechanical properties of clots play important roles in dictating the natural history in health and disease. In this paper, we present a novel multiscale computational model of biological, chemical, and mechanical contributions to the maturation of an occlusive clot from a fibrin-dominated to a collagen-dominated tissue. For an occlusive venous thrombus, simulations show the potential coupling between mechanical deformations and chemical processes, which can result in competing phenomena. This mixture-based framework also promises to guide future experimentation, which is vitally needed to increase our understanding of the complex and important biochemomechanics of clots.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

FEBio
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adhikari, A.S., Chai, J., Dunn, A.R.: Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc. 133(6), 1686-1689 (2011) · doi:10.1021/ja109972p
[2] Adhikari, A.S., Mekhdjian, A.H., Dunn, A.R.: Strain tunes proteolytic degradation and diffusive transport in fibrin networks. Biomacromolecules 13(2), 499-506 (2012) · doi:10.1021/bm2015619
[3] Adolph, R., Vorp, D.A., Steed, D.L., Webster, M.W., Kameneva, M.V., Watkins, S.C.: Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25(5), 916-926 (1997) · doi:10.1016/S0741-5214(97)70223-4
[4] Alexandrov, A.V., Molina, C.A., Grotta, J.C., Garami, Z., Ford, S.R., Alvarez-Sabin, J., Montaner, J., Saqqur, M., Demchuk, A.M., Moyé, L.A., et al.: Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N. Engl. J. Med. 351(21), 2170-2178 (2004) · doi:10.1056/NEJMoa041175
[5] Ateshian, G.A., Albro, M.B., Maas, S., Weiss, J.A.: Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. J. Biomech. Eng. 133(8), 081005 (2011) · doi:10.1115/1.4004810
[6] Ateshian, G.A., Maas, S., Weiss, J.A.: Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J. Biomech. Eng. 135(11), 111001 (2013) · doi:10.1115/1.4024823
[7] Ateshian, G.A., Nims, R.J., Maas, S., Weiss, J.A.: Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules. Biomech. Model. Mechanobiol. 13(5), 1105-1120 (2014) · doi:10.1007/s10237-014-0560-1
[8] Baek, S., Rajagopal, K., Humphrey, J.: A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128(1), 142-149 (2006) · doi:10.1115/1.2132374
[9] Barlow, G.H., Summaria, L., Robbins, K.C.: Molecular weight studies on human plasminogen and plasmin at the microgram level. Int. J. Biol. Chem. 244(5), 1138-1141 (1969)
[10] Bersi, M.R., Bellini, C., Wu, J., Montaniel, K.R., Harrison, D.G., Humphrey, J.D.: Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension 67(5), 890-896 (2016) · doi:10.1161/HYPERTENSIONAHA.115.06262
[11] Breen, E.C.: Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J. Appl. Physiol. 88(1), 203-209 (2000)
[12] Brown, A.E., Litvinov, R.I., Discher, D.E., Purohit, P.K., Weisel, J.W.: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941), 741-744 (2009) · doi:10.1126/science.1172484
[13] Bucay, I., O’Brien, E.T. III, Wulfe, S.D., Superfine, R., Wolberg, A.S., Falvo, M.R., Hudson, N.E.: Physical determinants of fibrinolysis in single fibrin fibers. PLoS ONE 10(2), e0116 (2015) · doi:10.1371/journal.pone.0116350
[14] Cohen, I., Gerrard, J.M., White, J.G.: Ultrastructure of clots during isometric contraction. J. Cell Biol. 93(3), 775-787 (1982) · doi:10.1083/jcb.93.3.775
[15] Davie, E.W., Fujikawa, K., Kisiel, W.: The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30(43), 10363 (1991) · doi:10.1021/bi00107a001
[16] Di Achille, P., Tellides, G., Figueroa, C., Humphrey, J.: A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. A 470(2172), 20140 (2014). 163 · Zbl 1371.92060 · doi:10.1098/rspa.2014.0163
[17] Diamond, S.L., Anand, S.: Inner clot diffusion and permeation during fibrinolysis. Biophys. J. 65(6), 2622 (1993) · doi:10.1016/S0006-3495(93)81314-6
[18] Diaz, J.A., Obi, A.T., Myers, D.D., Wrobleski, S.K., Henke, P.K., Mackman, N., Wakefield, T.W.: Critical review of mouse models of venous thrombosis. Arterioscler. Thromb. Vasc. Biol. 32(3), 556-562 (2012) · doi:10.1161/ATVBAHA.111.244608
[19] Doolittle, R.F.: Fibrinogen and fibrin. Encyclopedia of Life Sciences (2001)
[20] Emelianov, S., Chen, X., O’Donnell, M., Knipp, B., Myers, D., Wakefield, T., Rubin, J.: Triplex ultrasound: elasticity imaging to age deep venous thrombosis. Ultrasound Med. Biol. 28(6), 757-767 (2002) · doi:10.1016/S0301-5629(02)00516-1
[21] Genet, M., Rausch, M., Lee, L., Choy, S., Zhao, X., Kassab, G., Kozerke, S., Guccione, J., Kuhl, E.: Heterogeneous growth-induced prestrain in the heart. J. Biomech. 48(10), 2080-2089 (2015) · doi:10.1016/j.jbiomech.2015.03.012
[22] Göktepe, S., Miehe, C.: A micro-macro approach to rubber-like materials. Part III: the micro-sphere model of anisotropic mullins-type damage. J. Mech. Phys. Solids 53(10), 2259-2283 (2005) · Zbl 1120.74320 · doi:10.1016/j.jmps.2005.04.010
[23] Goldhaber, S.Z., Bounameaux, H.: Pulmonary embolism and deep vein thrombosis. Lancet 379(9828), 1835-1846 (2012) · doi:10.1016/S0140-6736(11)61904-1
[24] Heo, S., Xu, Y.: Constructing fully symmetric cubature formulae for the sphere. Math. Comput. 70(233), 269-279 (2001) · Zbl 0982.65027 · doi:10.1090/S0025-5718-00-01198-4
[25] Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1-3), 1-48 (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[26] Huang, L., Nagapudi, K., Apkarian, R.P., Chaikof, E.L.: Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci., Polym. Ed. 12(9), 979-993 (2001) · doi:10.1163/156856201753252516
[27] Humphrey, J., Rajagopal, K.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03), 407-430 (2002) · Zbl 1021.74026 · doi:10.1142/S0218202502001714
[28] Jerjes-Sanchez, C.: Venous and arterial thrombosis: a continuous spectrum of the same disease? Eur. Heart J. 26(1), 3-4 (2005) · doi:10.1093/eurheartj/ehi041
[29] Karšaj, I., Humphrey, J.D.: A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology 46(6), 509-527 (2009)
[30] Lanir, Y., Namani, R.: Reliability of structure tensors in representing soft tissues structure. J. Mech. Behav. Biomed. Mater. 46, 222-228 (2015) · doi:10.1016/j.jmbbm.2015.02.012
[31] Lee, Y., Naito, Y., Kurobe, H., Breuer, C., Humphrey, J.: Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. J. Biomech. 46(13), 2277-2282 (2013) · doi:10.1016/j.jbiomech.2013.06.013
[32] Lee, Y., Lee, A., Humphrey, J., Rausch, M.: Histological and biomechanical changes in a mouse model of venous thrombus remodeling. Biorheology 52(3), 235-245 (2015) · doi:10.3233/BIR-15058
[33] Libby, P., Theroux, P.: Pathophysiology of coronary artery disease. Circulation 111(25), 3481-3488 (2005) · doi:10.1161/CIRCULATIONAHA.105.537878
[34] Lo, K., Denney, W.S., Diamond, S.L.: Stochastic modeling of blood coagulation initiation. Pathophysiol. Haemost. Thromb. 34(2-3), 80-90 (2005)
[35] Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012) · doi:10.1115/1.4005694
[36] Mackman, N.: Triggers, targets and treatments for thrombosis. Nature 451(7181), 914-918 (2008) · doi:10.1038/nature06797
[37] Matveyev, M.Y., Domogatsky, S.P.: Penetration of macromolecules into contracted blood clot. Biophys. J. 63(3), 862 (1992) · doi:10.1016/S0006-3495(92)81656-9
[38] Rausch, M.K., Humphrey, J.D.: A microstructurally inspired damage model for early venous thrombus. J. Mech. Behav. Biomed. Mater. 55, 12-20 (2015) · doi:10.1016/j.jmbbm.2015.10.006
[39] Rausch, M.K., Kuhl, E.: On the effect of prestrain and residual stress in thin biological membranes. J. Mech. Phys. Solids 61(9), 1955-1969 (2013) · doi:10.1016/j.jmps.2013.04.005
[40] Rausch, M.K., Kuhl, E.: On the mechanics of growing thin biological membranes. J. Mech. Phys. Solids 63, 128-140 (2014) · Zbl 1303.74024 · doi:10.1016/j.jmps.2013.09.015
[41] Rausch, M.K., Zöllner, A.M., Genet, M., Baillargeon, B., Bothe, W., Kuhl, E.: A virtual sizing tool for mitral valve annuloplasty. Int. J. Numer. Methods Biomed. Eng. (2016). doi:10.1002/cnm.2788 · doi:10.1002/cnm.2788
[42] Robbie, L., Bennett, B., Croll, A., Brown, P., Booth, N.: Proteins of the fibrinolytic system in human thrombi. Thromb. Haemost. 75(1), 127-133 (1996)
[43] Ruberti, J.W., Hallab, N.J.: Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336(2), 483-489 (2005) · doi:10.1016/j.bbrc.2005.08.128
[44] Sakalihasan, N., Limet, R., Defawe, O.: Abdominal aortic aneurysm. Lancet 365(9470), 1577-1589 (2005) · doi:10.1016/S0140-6736(05)66459-8
[45] Starling, R.C., Moazami, N., Silvestry, S.C., Ewald, G., Rogers, J.G., Milano, C.A., Rame, J.E., Acker, M.A., Blackstone, E.H., Ehrlinger, J., et al.: Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 370(1), 33-40 (2014) · doi:10.1056/NEJMoa1313385
[46] Tepole, A.B., Kuhl, E.: Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach towards wound healing. Comput. Methods Biomech. Biomed. Eng. 24, 1-18 (2014)
[47] Tong, J., Cohnert, T., Regitnig, P., Holzapfel, G.A.: Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur. J. Vasc. Endovasc. Surg. 42(2), 207-219 (2011) · doi:10.1016/j.ejvs.2011.02.017
[48] Tsai, T.T., Evangelista, A., Nienaber, C.A., Myrmel, T., Meinhardt, G., Cooper, J.V., Smith, D.E., Suzuki, T., Fattori, R., Llovet, A., et al.: Partial thrombosis of the false lumen in patients with acute type b aortic dissection. N. Engl. J. Med. 357(4), 349-359 (2007) · doi:10.1056/NEJMoa063232
[49] Varjú, I., Sótonyi, P., Machovich, R., Szabó, L., Tenekedjiev, K., Silva, M., Longstaff, C., Kolev, K.: Hindered dissolution of fibrin formed under mechanical stress. J. Thromb. Haemost. 9(5), 979-986 (2011) · doi:10.1111/j.1538-7836.2011.04203.x
[50] Wilson, J.S., Virag, L., Di Achille, P., Karšaj, I., Humphrey, J.D.: Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J. Biomech. Eng. 135(2), 021011 (2013) · doi:10.1115/1.4023437
[51] Xu, Z., Lioi, J., Mu, J., Kamocka, M.M., Liu, X., Chen, D.Z., Rosen, E.D., Alber, M.: A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98(9), 1723-1732 (2010) · doi:10.1016/j.bpj.2009.12.4331
[52] Xu, Z., Kamocka, M., Alber, M., Rosen, E.D.: Computational approaches to studying thrombus development. Arterioscler. Thromb. Vasc. Biol. 31(3), 500-505 (2011) · doi:10.1161/ATVBAHA.110.213397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.