zbMATH — the first resource for mathematics

Framework for state and unknown input estimation of linear time-varying systems. (English) Zbl 1372.93200
Summary: The design of unknown-input decoupled observers and filters requires the assumption of an existence condition in the literature. This paper addresses an unknown input filtering problem where the existence condition is not satisfied. Instead of designing a traditional unknown input decoupled filter, a Double-Model Adaptive Estimation approach is extended to solve the unknown input filtering problem. It is proved that the state and the unknown inputs can be estimated and decoupled using the extended double-model adaptive estimation approach without satisfying the existence condition. Numerical examples are presented in which the performance of the proposed approach is compared to methods from literature.

93E11 Filtering in stochastic control theory
93E10 Estimation and detection in stochastic control theory
93C05 Linear systems in control theory
Full Text: DOI
[1] Ben Hmida, Fayçal; Khémiri, Karim; Ragot, José; Gossa, Moncef, Unbiased minimum-variance filter for state and fault estimation of linear time-varying systems with unknown disturbances, Mathematical Problems in Engineering, 2010, 1-17, (2010) · Zbl 1191.93129
[2] Caron, François; Davy, Manuel; Duflos, Emmanuel; Vanheeghe, Philippe, Particle filtering for multisensor data fusion with switching observation models: application to land vehicle positioning, IEEE Transactions on Signal Processing, 55, 6, 2703-2719, (2007) · Zbl 1390.93777
[3] Chen, Jie, & Patton, Ron J. (1996). Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances. In IEEE proceedings control theory and applications, Vol. 143 (pp. 31-36). · Zbl 0850.93748
[4] Cheng, Yue; Ye, Hao; Wang, Yongqiang; Zhou, Donghua, Unbiased minimum-variance state estimation for linear systems with unknown input, Automatica, 45, 2, 485-491, (2009) · Zbl 1158.93415
[5] Darouach, M.; Zasadzinski, M., Unbiased minimum variance estimation for systems with unknown exogenous inputs, Automatica, 33, 4, 717-719, (1997) · Zbl 0874.93086
[6] Darouach, M.; Zasadzinski, M.; Bassong, O. A.; Nowakowski, S., Kalman filtering with unknown inputs via optimal state estimation of singular systems, International Journal of Systems Science, 26, 10, 2015-2028, (1995) · Zbl 0834.93053
[7] Darouach, M.; Zasadzinski, M.; Boutayeb, M., Extension of minimum variance estimation for systems with unknown inputs, Automatica, 39, 5, 867-876, (2003) · Zbl 1036.93058
[8] Doucet, Arnaud; Godsill, Simon; Andrieu, Christophe, On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, 10, 197-208, (2000)
[9] Freitas, Nando De (2002). Rao-blackwellised particle filtering for fault diagnosis. In Proceedings IEEE aerospace conference (pp. 4-1767-4-1772).
[10] Friedland, Bernard, Treatment of bias in recursive filtering, IEEE Transactions on Automatic Control, 14, 4, 359-367, (1969)
[11] Gillijns, Steven; De Moor, Bart, Unbiased minimum-variance input and state estimation for linear discrete-time systems, Automatica, 43, 1, 111-116, (2007) · Zbl 1140.93480
[12] Gillijns, Steven; De Moor, Bart, Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica, 43, 5, 111-116, (2007) · Zbl 1140.93480
[13] Gordan, N.J., Salmond, D.J., & Smith, A.F.M. (1993). Novel approach to nonlinear/non-gaussian Bayesian state estimation. In Proc. Inst. Elect. Eng., F, Vol. 140 (pp. 107-113).
[14] Hou, M.; Patton, R. J., Optimal filtering for systems with unknown inputs, IEEE Transactions on Automatic Control, 43, 3, 445-449, (1998) · Zbl 0904.93037
[15] Hsieh, Chien-Shu, Robust two-stage Kalman filters for systems with unknown inputs, IEEE Transactions on Automatic Control, 45, 12, 2374-2378, (2000) · Zbl 0990.93130
[16] Hsieh, Chien-Shu, Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs, Automatica, 45, 9, 2149-2153, (2009) · Zbl 1175.93213
[17] Hsieh, Chien-Shu, On the global optimality of unbiased minimum-variance state estimation for systems with unknown inputs, Automatica, 46, 4, 708-715, (2010) · Zbl 1193.93164
[18] Hsieh, Chien-Shu; Chen, Fu-Guang, Optimal solution of the two-stage Kalman filter, IEEE Transactions on Automatic Control, 44, 1, 194-199, (1999) · Zbl 1056.93629
[19] Jazwinski, A. H., Adaptive filtering, Automatica, 5, 475-485, (1969) · Zbl 0214.47304
[20] Julier, Simon J., & Uhlmann, Jeffrey K. (1997). A new extension of the kalman filter to nonlinear systems. In Proc. aerosense: 11th int. symp. aerospace/defense sensing, simulation and controls (pp. 182-193).
[21] Kitanidis, Peter K., Unbiased minimum-variance linear state estimation, Automatica, 23, 6, 775-778, (1987) · Zbl 0627.93065
[22] Lu, Peng; Van Eykeren, Laurens; van Kampen, E.; de Visser, Cornelis Coen; Chu, Qiping, Double-model adaptive fault detection and diagnosis applied to real flight data, Control Engineering Practice, 36, 39-57, (2015)
[23] Magill, D. T., Optimal adaptive estimation of sampled stochastic processes, IEEE Transactions on Automatic Control, 10, 4, 434-439, (1965)
[24] Maybeck, Peter S., Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems, International Journal of Robust and Nonlinear Control, 9, 14, 1051-1070, (1999)
[25] Mclean, Donald, Automatic flight control systems, (1990), Prentice-Hall Englewood Cliffs, NJ · Zbl 0748.93001
[26] Mehra, Raman K., On the identification of variances and adaptive Kalman filtering, IEEE Transactions on Automatic Control, 15, 2, 175-184, (1970)
[27] Park, Sang Hwan; Kim, Pyung Soo; Kwon, Oh-kyu; Kwon, Wook Hyun, Estimation and detection of unknown inputs using optimal FIR filter, Automatica, 36, 1481-1488, (2000) · Zbl 0959.93517
[28] Verma, Vandi; Gordon, Geoff; Simmons, Reid; Thrun, Sebastian, Real-time fault diagnosis, IEEE Robotics and Automation Magazine, 11, 1, 56-66, (2004)
[29] Xia, Qijun; Rao, Ming; Ying, Yiqun; Shen, Xuemin, Adaptive fading kaiman filter with an application, Automatica, 30, 8, 1333-1338, (1994) · Zbl 0825.93812
[30] Zhao, Bo; Skjetne, Roger; Blanke, Mogens; Dukan, Fredrik, Particle filter for fault diagnosis and robust navigation of underwater robot, IEEE Transactions on Control Systems Technology, 22, 6, 2399-2407, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.