×

zbMATH — the first resource for mathematics

Efficient computation of the \(W_3\) topological invariant and application to Floquet-Bloch systems. (English) Zbl 1372.82050

MSC:
82D80 Statistical mechanical studies of nanostructures and nanoparticles
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett.45 494
[2] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett.49 405
[3] Kane C L and Mele E J 2005 Phys. Rev. Lett.95 146802
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys.82 3045
[5] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X-L and Zhang S-C 2007 Science318 766
[6] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett.98 106803
[7] Lindner N H, Refael G and Galitski V 2011 Nat. Phys.7 490
[8] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108
[9] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D-S, Sengstock K and Weitenberg C 2016 Science352 1091
[10] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science342 453
[11] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114
[12] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005
[13] Zhou L, Wang H, Ho Y D and Gong J 2014 Eur. Phys. J. B 87 204
[14] Lababidi M, Satija I I and Zhao E 2014 Phys. Rev. Lett.112 026805
[15] Ho D Y H and Gong J 2014 Phys. Rev. B 90 195419
[16] Ho D Y H and Gong J 2012 Phys. Rev. Lett.109 010601
[17] Fulga I C and Maksymenko M 2016 Phys. Rev. B 93 075405
[18] Carpentier D, Delplace P, Fruchart M and Gawedzki K 2015 Phys. Rev. Lett.114 106806
[19] Nathan F and Rudner M S 2015 New J. Phys.17 125014
[20] Nakahara M 2003 Geometry, Topology, and Physics 2nd edn (Bristol: Institute of Physics)
[21] Weinberg S 1996 The Quantum Theory of Fields vol 2 (Cambridge: Cambridge University Press)
[22] Bott R and Seeley R 1978 Commun. Math. Phys.62 235
[23] Prodan E and Schulz-Baldes H 2016 J. Funct. Anal.271 1150
[24] Prodan E and Schulz-Baldes H 2016 Bulk and Boundary Invariants for Complex Topological Insulators (New York: Springer)
[25] Loring T and Schulz-Baldes H 2017 arXiv:1701.07455
[26] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Japan74 1674
[27] Kato T 1966 Perturbation Theory for Linear Operators (New York: Springer)
[28] Von Neumann J and Wigner E 1929 Phys. Z.30 467
[29] Berry M V 1984 Proc. R. Soc. A 392 45
[30] Alvermann A and Fehske H 2011 J. Comput. Phys.230 5930
[31] Hänggi P 1997 Quantum Transport, Dissipation ed T Dittrich et al (Weinheim: Wiley-VCH) pp 249-86
[32] Gu Z, Fertig H A, Arovas D P and Auerbach A 2011 Phys. Rev. Lett.107 216601
[33] Usaj G, Perez-Piskunow P M, Foa Torres L E F and Balseiro C A 2014 Phys. Rev. B 90 115423
[34] Titum P, Lindner N H, Rechtsman M C and Refael G 2015 Phys. Rev. Lett.114 056801
[35] Wang Y-X and Li F 2016 Physica B 492 1
[36] Peierls R 1933 Z. Phys.80 763
[37] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature496 196
[38] Lu L, Joannopoulos J D and Soljacic M 2014 Nat. Photon.8 821
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.