×

zbMATH — the first resource for mathematics

Antenna showers with hadronic initial states. (English) Zbl 1372.81157
Summary: We present an antenna shower formalism including contributions from initial-state partons and corresponding backwards evolution. We give a set of phase-space maps and antenna functions for massless partons which define a complete shower formalism suitable for computing observables with hadronic initial states. We focus on the initial-state components: initial-initial and initial-final antenna configurations. The formalism includes comprehensive possibilities for uncertainty estimates. We report on some preliminary results obtained with an implementation in the Vincia antenna-shower framework.

MSC:
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Buckley, A.; Butterworth, J.; Gieseke, S.; Grellscheid, D.; Höche, S., Phys. Rept., 504, 145, (2011)
[2] Sjöstrand, T., Phys. Lett. B, 157, 321, (1985)
[3] Altarelli, G.; Parisi, G., Nucl. Phys. B, 126, 298, (1977)
[4] Gustafson, G.; Pettersson, U., Nucl. Phys. B, 306, 746, (1988)
[5] Lönnblad, L., Comput. Phys. Commun., 71, 15, (1992)
[6] Winter, J.-C.; Krauss, F., JHEP, 0807, 040, (2008)
[7] Kosower, D. A., Phys. Rev. D, 57, 5410, (1998)
[8] Kosower, D. A., Phys. Rev. D, 71, 045016, (2005)
[9] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. N., JHEP, 0509, 056, (2005)
[10] Daleo, A.; Gehrmann, T.; Maitre, D., JHEP, 0704, 016, (2007)
[11] Giele, W. T.; Kosower, D. A.; Skands, P. Z., Phys. Rev. D, 78, 014026, (2008)
[12] Gehrmann-De Ridder, A.; Ritzmann, M.; Skands, P., Phys. Rev. D, 85, 014013, (2012)
[13] Lopez-Villarejo, J.; Skands, P., JHEP, 1111, 150, (2011)
[14] Bern, Z., The NLO multileg working group: summary report, (2008)
[15] Giele, W.; Kosower, D.; Skands, P., Phys. Rev. D, 84, 054003, (2011)
[16] Beringer, J., Phys. Rev. D, 86, 010001, (2012)
[17] Skands, P. Z.; Weinzierl, S., Phys. Rev. D, 79, 074021, (2009)
[18] Larkoski, A. J.; Peskin, M. E., Phys. Rev. D, 81, 054010, (2010)
[19] Plätzer, S.; Gieseke, S., JHEP, 1101, 024, (2011)
[20] Catani, S.; Seymour, M., Nucl. Phys. B, 485, 291, (1997)
[21] Catani, S.; Seymour, M., Phys. Lett. B, 378, 287, (1996)
[22] Plehn, T.; Rainwater, D.; Skands, P. Z., Phys. Lett. B, 645, 217, (2007)
[23] Sjöstrand, T.; Skands, P. Z., Eur. Phys. J. C, 39, 129, (2005)
[24] Martin, A.; Stirling, W.; Thorne, R.; Watt, G., Eur. Phys. J. C, 63, 189, (2009)
[25] Sjöstrand, T.; Mrenna, S.; Skands, P. Z., Comput. Phys. Commun., 178, 852, (2008)
[26] Skands, P.; Webber, B.; Winter, J., JHEP, 1207, 151, (2012)
[27] Abe, F., Phys. Rev. D, 50, 5562, (1994)
[28] Cacciari, M.; Salam, G. P.; Soyez, G., Eur. Phys. J. C, 72, 1896, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.