zbMATH — the first resource for mathematics

A framework for second-order parton showers. (English) Zbl 1372.81147
Summary: A framework is presented for including second-order perturbative corrections to the radiation patterns of parton showers. The formalism allows to combine \(\mathcal{O}(\alpha_s^2)\)-corrected iterated \(2 \rightarrow 3\) kernels for “ordered” gluon emissions with tree-level \(2 \rightarrow 4\) kernels for “unordered” ones. The combined Sudakov evolution kernel is thus accurate to \(\mathcal{O}(\alpha_s^2)\). As a first step towards a full-fledged implementation of these ideas, we develop an explicit implementation of \(2 \rightarrow 4\) shower branchings in this letter.
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX Cite
Full Text: DOI
[1] Gustafson, G.; Pettersson, U., Dipole formulation of QCD cascades, Nucl. Phys. B, 306, 746-758, (1988)
[2] Lönnblad, L., ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun., 71, 15-31, (1992)
[3] Sjöstrand, T.; Skands, P. Z., Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C, 39, 129-154, (2005)
[4] Nagy, Z.; Soper, D. E., Matching parton showers to NLO computations, J. High Energy Phys., 10, (2005)
[5] Nagy, Z.; Soper, D. E., Parton showers with quantum interference, J. High Energy Phys., 09, (2007)
[6] Giele, W. T.; Kosower, D. A.; Skands, P. Z., A simple shower and matching algorithm, Phys. Rev. D, 78, (2008)
[7] Dinsdale, M.; Ternick, M.; Weinzierl, S., Parton showers from the dipole formalism, Phys. Rev. D, 76, (2007)
[8] Schumann, S.; Krauss, F., A parton shower algorithm based on catani-seymour dipole factorisation, J. High Energy Phys., 03, (2008)
[9] Winter, J.-C.; Krauss, F., Initial-state showering based on colour dipoles connected to incoming parton lines, J. High Energy Phys., 07, (2008)
[10] Plätzer, S.; Gieseke, S., Coherent parton showers with local recoils, J. High Energy Phys., 01, (2011) · Zbl 1214.81306
[11] Höche, S.; Prestel, S., The midpoint between dipole and parton showers, Eur. Phys. J. C, 75, 9, 461, (2015)
[12] Jadach, S.; Kusina, A.; Placzek, W.; Skrzypek, M.; Slawinska, M., Inclusion of the QCD next-to-leading order corrections in the quark-gluon Monte Carlo shower, Phys. Rev. D, 87, 3, (2013)
[13] Hartgring, L.; Laenen, E.; Skands, P., Antenna showers with one-loop matrix elements, J. High Energy Phys., 10, (2013)
[14] Nagy, Z.; Soper, D. E., A parton shower based on factorization of the quantum density matrix, J. High Energy Phys., 06, (2014)
[15] Jadach, S.; Kusina, A.; Placzek, W.; Skrzypek, M., On the dependence of QCD splitting functions on the choice of the evolution variable, J. High Energy Phys., 08, (2016) · Zbl 1390.81185
[16] Alioli, S.; Bauer, C. W.; Berggren, C. J.; Hornig, A.; Tackmann, F. J.; Vermilion, C. K.; Walsh, J. R.; Zuberi, S., Combining higher-order resummation with multiple NLO calculations and parton showers in Geneva, J. High Energy Phys., 09, (2013)
[17] Azimov, Y. I.; Dokshitzer, Y. L.; Khoze, V. A.; Troian, S. I., The string effect and QCD coherence, Phys. Lett. B, 165, 147-150, (1985)
[18] Kosower, D. A., Antenna factorization of gauge theory amplitudes, Phys. Rev. D, 57, 5410-5416, (1998)
[19] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. W.N., Antenna subtraction at NNLO, J. High Energy Phys., 09, (2005)
[20] Fischer, N.; Prestel, S.; Ritzmann, M.; Skands, P., Vincia for hadron colliders, Eur. Phys. J. C, 76, 11, 589, (2016)
[21] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C. O.; Skands, P. Z., An introduction to PYTHIA 8.2, Comput. Phys. Commun., 191, 159-177, (2015) · Zbl 1344.81029
[22] Giele, W. T.; Kosower, D. A.; Skands, P. Z., Higher-order corrections to timelike jets, Phys. Rev. D, 84, (2011)
[23] Lopez-Villarejo, J. J.; Skands, P. Z., Efficient matrix-element matching with sector showers, J. High Energy Phys., 11, (2011)
[24] Ritzmann, M.; Kosower, D. A.; Skands, P., Antenna showers with hadronic initial states, Phys. Lett. B, 718, 1345-1350, (2013) · Zbl 1372.81157
[25] Nagy, Z.; Soper, D. E., Final state dipole showers and the DGLAP equation, J. High Energy Phys., 05, (2009)
[26] Skands, P. Z.; Weinzierl, S., Some remarks on dipole showers and the DGLAP equation, Phys. Rev. D, 79, (2009)
[27] Ellis, R. K.; Stirling, W. J.; Webber, B. R., QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 8, 1-435, (1996)
[28] Veberic, D., Having fun with Lambert W(x) function
[29] Veberic, D., Lambert W function for applications in physics, Comput. Phys. Commun., 183, 2622-2628, (2012)
[30] Gehrmann-De Ridder, A.; Ritzmann, M.; Skands, P. Z., Timelike dipole-antenna showers with massive fermions, Phys. Rev. D, 85, (2012)
[31] Plätzer, S.; Sjödahl, M., The Sudakov veto algorithm reloaded, Eur. Phys. J. Plus, 127, 26, (2012)
[32] Hoeche, S.; Krauss, F.; Schönherr, M.; Siegert, F., A critical appraisal of NLO+PS matching methods, J. High Energy Phys., 09, (2012)
[33] Lönnblad, L., Fooling around with the Sudakov veto algorithm, Eur. Phys. J. C, 73, 3, 2350, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.