×

Analysis of the non-reflecting boundary condition for the time-harmonic electromagnetic wave propagation in waveguides. (English) Zbl 1372.78015

This paper deals with mathematical aspects of a solution for electromagnetic harmonic wave propagation in waveguides with non-reflecting boundary conditions and radiating condition at infinity. The author first defines a suitable electric-to-magnetic operator and then establishes the well-posedness of the considered variational problem, applying the field decomposition method and assuming truncated waveguides of finite domain.

MSC:

78A50 Antennas, waveguides in optics and electromagnetic theory
35Q61 Maxwell equations
78A40 Waves and radiation in optics and electromagnetic theory
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35L20 Initial-boundary value problems for second-order hyperbolic equations
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abboud, T., Electromagnetic waves in periodic media, (Second International Conference on Mathematical and Numerical Aspects of Wave Propagation. Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE, 1993 (1993), SIAM: SIAM Philadelphia, PA), 1-9 · Zbl 0815.35106
[2] Abboud, T.; Nédélec, J.-C., Electromagnetic waves in an inhomogeneous medium, J. Math. Anal. Appl., 164, 1, 40-58 (1992) · Zbl 0755.35134
[3] Alonso, A.; Valli, A., Some remarks on the characterization of the space of tangential traces of \(H(rot; \Omega)\) and the construction of an extension operator, Manuscripta Math., 89, 2, 159-178 (1996) · Zbl 0856.46019
[4] Bécache, E.; Bonnet-Ben Dhia, A.-S.; Legendre, G., Perfectly matched layers for the convected Helmholtz equation, SIAM J. Numer. Anal., 42, 1, 409-433 (2004) · Zbl 1089.76045
[5] Bendali, A.; Guillaume, P., Non-reflecting boundary conditions for waveguides, Math. Comp., 68, 225, 123-144 (1999) · Zbl 0907.35127
[6] Bermúdez, A.; Pedreira, D. G., Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides, Numer. Math., 61, 1, 39-57 (1992) · Zbl 0741.65095
[7] Bramble, J. H.; Zhang, X., The analysis of multigrid methods, (Handbook of Numerical Analysis, vol. VII (2000), North-Holland: North-Holland Amsterdam), 173-415 · Zbl 0972.65103
[8] Buffa, A.; Ciarlet, P., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci., 24, 1, 9-30 (2001) · Zbl 0998.46012
[9] Buffa, A.; Ciarlet, P., On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Methods Appl. Sci., 24, 1, 31-48 (2001) · Zbl 0976.46023
[10] Buffa, A.; Costabel, M.; Sheen, D., On traces for \(H(curl, \Omega)\) in Lipschitz domains, J. Math. Anal. Appl., 276, 2, 845-867 (2002) · Zbl 1106.35304
[11] Cessenat, M., Mathematical Methods in Electromagnetism, Linear Theory and Applications, Series on Advances in Mathematics for Applied Sciences, vol. 41 (1996), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ · Zbl 0917.65099
[12] Chandler-Wilde, S. N.; Hewett, D. P.; Moiola, A., Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples, Mathematika, 61, 2, 414-443 (2015) · Zbl 1341.46014
[13] Chen, Z.; Yuan, J.-h., On finite element methods for inhomogeneous dielectric waveguides, J. Comput. Math., 22, 2, 188-199 (2004) · Zbl 1052.78016
[14] Davies, E. B.; Parnovski, L., Trapped modes in acoustic waveguides, Quart. J. Mech. Appl. Math., 51, 3, 477-492 (1998) · Zbl 0908.76083
[15] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159 (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1059.65103
[16] Evans, D. V.; Levitin, M.; Vassiliev, D., Existence theorems for trapped modes, J. Fluid Mech., 261, 21-31 (1994) · Zbl 0804.76075
[17] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations, vol. 5 (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0585.65077
[18] Goldstein, C. I., A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains, Math. Comp., 39, 160, 309-324 (1982) · Zbl 0493.65046
[19] Jackson, J. D., Classical Electrodynamics (1998), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York-London-Sydney · Zbl 0114.42903
[20] Joly, P.; Poirier, C.; Roberts, J. E.; Trouve, P., A new nonconforming finite element method for the computation of electromagnetic guided waves. I. Mathematical analysis, SIAM J. Numer. Anal., 33, 4, 1494-1525 (1996) · Zbl 0861.65092
[21] Kim, S., Analysis of the convected Helmholtz equation with a uniform mean flow in a waveguide with complete radiation boundary conditions, J. Math. Anal. Appl., 410, 1, 275-291 (2014) · Zbl 1316.35094
[22] Kim, S.; Zhang, H., Optimized Schwarz method with complete radiation transmission conditions for the Helmholtz equation in waveguides, SIAM J. Numer. Anal., 53, 3, 1537-1558 (2015) · Zbl 1327.78025
[23] Kim, S.; Zhang, H., Optimized double sweep Schwarz method with complete radiation boundary conditions for the Helmholtz equation in waveguides, Comput. Math. Appl., 72, 6, 1573-1589 (2016) · Zbl 1359.65291
[24] Kirsch, A.; Monk, P., A finite element/spectral method for approximating the time-harmonic Maxwell system in \(R^3\), SIAM J. Appl. Math., 55, 5, 1324-1344 (1995) · Zbl 0840.65128
[25] Lions, J.-L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications, vol. I (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0223.35039
[26] Mitsoudis, D. A.; Makridakis, C.; Plexousakis, M., Helmholtz equation with artificial boundary conditions in a two-dimensional waveguide, SIAM J. Math. Anal., 44, 6, 4320-4344 (2012) · Zbl 1312.76057
[27] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press: Oxford University Press New York · Zbl 1024.78009
[28] Vardapetyan, L.; Demkowicz, L., Full-wave analysis of dielectric waveguides at a given frequency, Math. Comp., 72, 241, 105-129 (2003) · Zbl 1009.78010
[29] Vardapetyan, L.; Demkowicz, L.; Neikirk, D., hp-vector finite element method for eigenmode analysis of waveguides, Comput. Methods Appl. Mech. Engrg., 192, 1-2, 185-201 (2003) · Zbl 1014.78012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.