×

zbMATH — the first resource for mathematics

Non-polynomial spline alternatives in isogeometric symmetric Galerkin BEM. (English) Zbl 1372.65316
Summary: The application of the Isogeometric Analysis (IgA) paradigm to Symmetric Galerkin Boundary Element Method (SGBEM) is investigated. In order to obtain a very flexible approach, the study is here developed by using non-polynomial spline functions to represent both the domain boundary and the approximate solution. The numerical comparison between IGA-SGBEM and both curvilinear and standard SGBEM approaches shows the general capability of the presented method to produce accurate approximate solutions with less degrees of freedom.

MSC:
65N38 Boundary element methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aimi, A.; Diligenti, M.; Monegato, G., New numerical integration schemes for applications of Galerkin BEM to 2D problems, Int. J. Numer. Methods Eng., 40, 1977-1999, (1997) · Zbl 0886.73074
[2] Aimi, A.; Diligenti, M.; Monegato, G., Numerical integration schemes for the BEM solution of hypersingular integral equations, Int. J. Numer. Methods Eng., 45, 1807-1830, (1999) · Zbl 0958.65122
[3] Aimi, A.; Diligenti, M.; Sampoli, M. L.; Sestini, A., Isogeometric analysis and symmetric Galerkin BEM: a 2D numerical study, Appl. Math. Comput., 272, 173-186, (2016) · Zbl 1410.65468
[4] Bonnet, M.; Maier, G.; Polizzotto, C., Symmetric Galerkin boundary element method, Appl. Mech. Rev., 5, 1, 669-704, (1998)
[5] Chen, G.; Zhou, J., Boundary element methods, computational mathematics and applications, (1992), Academic Press London
[6] Costabel, M., Symmetric methods for the coupling of finite elements and boundary elements, (Brebbia, C. A.; Wendland, W. L.; Kuhn, G., Boundary Elements IX, vol. 1, (1987), Springer-Verlag Stuttgart)
[7] Costabel, M., Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., 19, 3, 613-626, (1998) · Zbl 0644.35037
[8] Costantini, P.; Lyche, T.; Manni, C., On a class of weak Tchebycheff systems, Numer. Math., 101, 333-354, (2005) · Zbl 1085.41002
[9] de Boor, C., A practical guide to splines, Appl. Math. Sci., vol. 27, (2001), Springer-Verlag New York · Zbl 0987.65015
[10] Farin, G., Curves and surfaces for CAGD. A practical guide, (2002), Morgan Kaufmann
[11] Farin, G.; Hoschek, J.; Kim, M.-S., Handbook of computer aided geometric design, (2002), Elsevier Amsterdam · Zbl 1003.68179
[12] Farouki, R. T.; Sakkalis, T., Real rational curves are not “unit speed”, CAGD, 8, 151-157, (1991) · Zbl 0746.41019
[13] Hughes, T. J.R., The finite element method, (2000), Dover Publications
[14] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135-4195, (2005) · Zbl 1151.74419
[15] Kvasov, B. I.; Sattayatham, P., GB-splines of arbitrary order, J. Comput. Appl. Math., 104, 63-88, (1999) · Zbl 0952.65017
[16] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 1427-1437, (2011)
[17] Manni, C.; Pelosi, F.; Sampoli, M. L., Generalized B-splines as a tool in isogeometric analysis, Comput. Methods Appl. Mech. Eng., 200, 867-881, (2011) · Zbl 1225.74123
[18] Manni, C., Isogeometric collocation methods with generalized B-splines, Comput. Math. Appl., 70, 1659-1675, (2015)
[19] Mazure, M. L., Chebyshev-Bernstein bases, Comput. Aided Geom. Des., 16, 649-669, (1999) · Zbl 0997.65022
[20] Natarajan, S.; Wang, J.; Song, C.; Birk, C., Isogeometric analysis enhanced by the scaled boundary finite element method, Comput. Methods Appl. Mech. Eng., 283, 733-762, (2015) · Zbl 1425.65174
[21] Nguyen, B. H.; Tran, H. D.; Anitescu, C.; Zhuang, X.; Rabczuk, T., An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems, Comput. Methods Appl. Mech. Eng., 306, 252-275, (2016)
[22] Politis, C. G.; Ginnis, A. I.; Kaklis, P. D.; Belibassakis, K.; Feurer, C., An isogeometric BEM for exterior potential-flow problems in the plane, (Proceeding of SIAM/ACM Joint Conference on Geometric and Physical Modeling, (2009)), 349-354
[23] Politis, C. G.; Papagiannopoulos, A.; Belibassakis, K. A.; Kaklis, P. D.; Kostas, K. V.; Ginnis, A. I.; Gerostathis, T. P., An isogeometric BEM for exterior potential-flow problems around lifting bodies, (Oñate, E.; Oliver, J.; Huerta, A., Proceeding of ECCM V, (2014)), 2433-2444
[24] Le Veque, Randall J., Finite difference methods for ordinary and partial differential equations, (2007), SIAM
[25] Rannacher, R.; Wendland, W. L., On the order of pointwise convergence of some boundary element methods. part I. operators of negative and zero order, Math. Model. Numer. Anal., 19, 1, 65-88, (1985) · Zbl 0579.65147
[26] Rannacher, R.; Wendland, W. L., Pointwise convergence of some boundary element methods. part II, Math. Model. Numer. Anal., 22, 2, 343-362, (1988) · Zbl 0648.65092
[27] Schwab, C.; Wendland, W. L., Kernel properties and representations of boundary integral operators, Math. Nachr., 156, 156-218, (1992) · Zbl 0805.35168
[28] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Eng., 209-212, 87-100, (2012) · Zbl 1243.74193
[29] Sirtori, S.; Maier, G.; Novati, G.; Micoli, S., A Galerkin symmetric boundary element method in elasticity: formulation and implementation, Int. J. Numer. Methods Eng., 35, 255-282, (1992) · Zbl 0768.73089
[30] Wang, G.; Fang, M., Unified and extended form of three types of splines, J. Comput. Appl. Math., 216, 498-508, (2008) · Zbl 1148.41010
[31] Wendland, W. L., On some mathematical aspects of boundary element methods for elliptic problems, (The Mathematics of Finite Elements and Applications V, (1985), Academic Press London) · Zbl 0587.65079
[32] Wendland, W. L., Variational methods for BEM, (Morino, L.; Piva, R., Boundary Integral Equation Methods - Theory and Applications, (1990), Springer-Verlag) · Zbl 0712.65099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.