zbMATH — the first resource for mathematics

On monomial complete permutation polynomials. (English) Zbl 1372.11107
Summary: We investigate monomials \(a x^d\) over the finite field with \(q\) elements \(\mathbb{F}_q\), in the case where the degree \(d\) is equal to \(\frac{q - 1}{q' - 1} + 1\) with \(q = (q')^n\) for some \(n\). For \(n = 6\) we explicitly list all \(a\)’s for which \(a x^d\) is a complete permutation polynomial (CPP) over \(\mathbb{F}_q\). Some previous characterization results by Wu et al. for \(n = 4\) are also made more explicit by providing a complete list of \(a\)’s such that \(a x^d\) is a CPP. For odd \(n\), we show that if \(q\) is large enough with respect to \(n\) then \(a x^d\) cannot be a CPP over \(\mathbb{F}_q\), unless \(q\) is even, \(n \equiv 3(\operatorname{mod} 4)\), and the trace \(\operatorname{Tr}_{\mathbb{F}_q / \mathbb{F}_{q'}}(a^{- 1})\) is equal to 0.

11T06 Polynomials over finite fields
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
94A60 Cryptography
Full Text: DOI
[1] D. Bartoli, M. Giulietti, L. Quoos, G. Zini, Complete permutation polynomials from exceptional polynomials, in preparation. · Zbl 1364.11150
[2] Bartocci, U.; Segre, B., Ovali ed altre curve nei piani di Galois di caratteristica 2, Acta Arith., XVIII, 423-449, (1971) · Zbl 0219.50016
[3] L.A. Bassalygo, V.A. Zinoviev, On complete permutation polynomials, in: Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory, Proceedings, Svetlogorsk (Kaliningrad region), Russia, September 7-13, 2014, pp. 57-62.
[4] L.A. Bassalygo, V.A. Zinoviev, On one class of permutation polynomials over finite fields of characteristic two, preprint. · Zbl 1393.11079
[5] Bassalygo, L. A.; Zinoviev, V. A., Permutation and complete permutation polynomials, Finite Fields Appl., 33, 198-211, (2015) · Zbl 1368.11126
[6] Charpin, P.; Kyureghyan, G. M., Cubic monomial bent functions: a subclass of \(\mathcal{M}^\ast\), SIAM J. Discrete Math., 22, 2, 650-665, (2008) · Zbl 1171.11062
[7] E. Franzè, Polinomi di permutazione, Master thesis, Università degli Studi di Perugia.
[8] Hirschfeld, J. W.P.; Korchmáros, G.; Torres, F., Algebraic curves over a finite field, Princeton Ser. Appl. Math., (2008), Princeton · Zbl 1200.11042
[9] Hou, X., Permutation polynomials over finite fields - a survey of recent advances, Finite Fields Appl., 32, 82-119, (2015) · Zbl 1325.11128
[10] Ma, J.; Zhang, T.; Feng, T.; Ge, G., New results on permutation polynomials over finite fields
[11] Mullen, G. L.; Wang, Q., Permutation polynomials: one variable, (Mullen, G. L.; Panario, D., Handbook of Finite Fields, (2013), Chapman and Hall/CRC)
[12] Muratovic-Ribic, A.; Pasalic, E., A note on complete polynomials over finite fields and their applications in cryptography, Finite Fields Appl., 25, 306-315, (2014) · Zbl 1302.11096
[13] Niederreiter, H.; Robinson, K. H., Complete mappings of finite fields, J. Aust. Math. Soc. Ser. A, 33, 197-212, (1982) · Zbl 0495.12018
[14] Stanica, P.; Gangopadhyay, S.; Chaturvedi, A.; Gangopadhyay, A. K.; Maitra, S., Investigation on bent and negabent functions via the nega-Hadamard transform, IEEE Trans. Inf. Theory, 58, 6, 4064-4072, (2012) · Zbl 1365.94684
[15] Segre, B., Ovali e curve σ nei piani di Galois di caratteristica 2, Atti Accad Naz. Lincei, 32, 8, 785-790, (1962) · Zbl 0107.38102
[16] Sarkar, S.; Bhattacharya, S.; Cesmelioglu, A., On some permutation binomials of the form \(x^{(2^h - 1) / k + 1} + a x\) over \(\mathbb{F}_{2^h}\): existence and count, (International Workshop on the Arithmetic of Finite Fields, WAIFI 2012, Lect. Notes Comput. Sci., vol. 7369, (2012), Springer), 236-246 · Zbl 1292.11132
[17] Tu, Z.; Zeng, X.; Hu, L., Several classes of complete permutation polynomials, Finite Fields Appl., 25, 182-193, (2014) · Zbl 1284.05012
[18] Wu, G.; Li, N.; Helleseth, T.; Zhang, Y., Some classes of monomial complete permutation polynomials over finite fields of characteristic two, Finite Fields Appl., 28, 148-165, (2014) · Zbl 1314.11073
[19] Wu, G.; Li, N.; Helleseth, T.; Zhang, Y., Some classes of complete permutation polynomials over \(\mathbb{F}_q\), Sci. China Math., 58, 10, 2081-2094, (2015) · Zbl 1325.05013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.