×

zbMATH — the first resource for mathematics

A survey of multi-agent formation control. (English) Zbl 1371.93015
Summary: We present a survey of formation control of multi-agent systems. Focusing on the sensing capability and the interaction topology of agents, we categorize the existing results into position-, displacement-, and distance-based control. We then summarize problem formulations, discuss distinctions, and review recent results of the formation control schemes. Further, we review some other results that do not fit into this categorization.

MSC:
93A14 Decentralized systems
68T42 Agent technology and artificial intelligence
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
Software:
Boids
PDF BibTeX Cite
Full Text: DOI
References:
[1] Ahn, H.-S. (2009). Formation coordination for self-mobile localization: Framework. In Proceedings of the 2009 IEEE international symposium on computational intelligence in robotics and automation (pp. 1-9).
[2] Anderson, B. D., Dasgupta, S., & Yu, C. (2007). Control of directed formations with a leader-first follower structure. In Proceedings of the 46th IEEE conference on decision and control (pp. 2882-2887).
[3] Anderson, B. D. O., & Yu, C. (2011). Range-only sensing for formation shape control and easy sensor network localization. In Proceedings of the 2011 Chinese control and decision conference (pp. 3310-3315).
[4] Anderson, B. D.O.; Yu, C.; Dasgupta, S.; Morse, A. S., Control of a three-coleader formation in the plane, Systems & Control Letters, 56, 9, 573-578, (2007) · Zbl 1155.93366
[5] Anderson, B. D. O., Yu, C., Dasgupta, S., & Summers, T. H. (2010). Controlling four agent formations. In Proceedings of the 2nd IFAC workshop on distributed estimation and control in networked systems (pp. 139-144).
[6] Anderson, B. D.O.; Yu, C.; Fidan, B.; Hendrickx, J., Rigid graph control architectures for autonomous formations, IEEE Control Systems Magazine, 28, 6, 48-63, (2008) · Zbl 1395.93383
[7] Asimow, L.; Roth, B., The rigidity of graphs II, Journal of Mathematical Analysis and Applications, 68, 1, 171-190, (1979) · Zbl 0441.05046
[8] Baillieul, J., & Suri, A. (2003). Information patterns and hedging Brockett’s theorem in controlling vehicle formations. In Proceedings of the 42nd IEEE conference on decision and control (pp. 556-563).
[9] Basiri, M.; Bishop, A. N.; Jensfelt, P., Distributed control of triangular formations with angle-only constraints, Systems & Control Letters, 59, 2, 147-154, (2010) · Zbl 1186.93003
[10] Beard, R. W.; Lawton, J.; Hadaegh, F. Y., A coordination architecture for spacecraft formation control, IEEE Transactions on Control Systems Technology, 9, 6, 777-790, (2001)
[11] Belabbas, M. A. (2011). On global feedback stabilization of decentralized formation control. In Proceedings of the 50th IEEE conference on decision and control and the 2011 European control conference (pp. 5750-5755).
[12] Belabbas, M. A., Mou, S., Morse, A. S., & Anderson, B. D. O. (2012). Robustness issues with undirected formations. In Proceedings of the 51st IEEE conference on decision and control (pp. 1445-1450).
[13] Bishop, A. N. (2011a). Distributed bearing-only quadrilateral formation control. In Proceedings of the 18th IFAC world congress (pp. 4507-4512).
[14] Bishop, A. N. (2011b). A very relaxed control law for bearing-only triangular formation control. In Proceedings of the 2011 IFAC world congress(pp. 5991-5998).
[15] Bishop, A. N., & Basiri, M. 2010. Bearing-only triangular formation control on the plane and the sphere. In Proceedings of the 18th Mediterranean conference on control and automation (pp. 790-795).
[16] Bishop, A. N., Shames, I., & Anderson, B. D. O. (2011). Stabilization of rigid formations with direction-only constraints. In Proceedings of the 50th IEEE conference on decision and control and the 2011 European control conference (pp. 746-752).
[17] Bishop, A. N., Summers, T. H., & Anderson, B. D. O. (2012). Control of triangle formations with a mix of angle and distance constraints. In Proceedings of the 2012 IEEE conference on control applications (pp. 825-830).
[18] Cao, M., Anderson, B. D. O., Morse, A. S., & Yu, C. (2008). Control of acyclic formations of mobile autonomous agents. In Proceedings of the 47th IEEE conference on decision and control (pp. 1187-1192).
[19] Cao, M., Morse, A. S., Yu, C., Anderson, B. D. O., & Dasgupta, S. (2007). Controlling a triangular formation of mobile autonomous agents. In Proceedings of the 46th IEEE conference on decision and control (pp. 3603-3608).
[20] Cao, M.; Morse, A. S.; Yu, C.; Anderson, B. D.O.; Dasgupta, S., Maintaining a directed, triangular formation of mobile autonomous agents, Communications in Information and Systems, 11, 1-16, (2011) · Zbl 1269.93065
[21] Cao, Y., & Ren, W. (2009). Containment control with multiple stationary or dynamic leaders under a directed interaction graph. In Proceedings of the 48th IEEE conference on decision and control and the 28th Chinese control conference(pp. 3014-3019).
[22] Cao, Y.; Ren, W., Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping, Systems & Control Letters, 59, 3, 233-240, (2010) · Zbl 1222.93006
[23] Cao, Y.; Stuart, D.; Ren, W.; Meng, Z., Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments, IEEE Transactions on Control Systems Technology, 19, 4, 929-938, (2011)
[24] Cao, M.; Yu, C.; Anderson, B. D.O., Formation control using range-only measurements, Automatica, 47, 4, 776-781, (2011) · Zbl 1215.93011
[25] Cao, M., Yu, C., Morse, A. S., Anderson, B. D. O., & Dasgupta, S. (2008). Generalized controller for directed triangle formations. In Proceedings of the 2008 IFAC world congress (pp. 6590-6595).
[26] Caruso, M. J. (2000). Applications of magnetic sensors for low cost compass systems. In Proceedings of the 2000 IEEE position location and navigation symposium(pp. 177-184).
[27] Chen, C.-T., Linear system theory and design, (1998), Oxford University Press
[28] Chen, F., Ren, W., & Lin, Z. (2010). Multi-agent coordination with cohesion, dispersion, and containment control. In Proceedings of the 2011 American control conference (pp. 4756-4761).
[29] Chen, Y. Q., & Wang, Z. 2005. Formation control: a review and a new consideration. In Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems (pp. 3181-3186).
[30] Coogan, S.; Arcak, M., Scaling the size of a formation using relative position feedback, Automatica, 48, 10, 2677-2685, (2012) · Zbl 1271.93007
[31] Coogan, S., Arcak, M., & Egerstedt, M. (2011). Scaling the size of a multiagent formation via distributed feedback. In Proceedings of the 50th IEEE conference on decision and control and 2011 European control conference (pp. 994-999).
[32] Cortés, J., Global and robust formation-shape stabilization of relative sensing networks, Automatica, 45, 12, 2754-2762, (2009) · Zbl 1192.93105
[33] Dasgupta, S., Anderson, B. D. O., Yu, C., & Summers, T. H. (2011). Controlling rectangular formations. In Proceedings of the 2011 Australian control conference (pp. 44-49).
[34] Dimarogonas, D. V., Egerstedt, M., & Kyriakopoulos, K. J. (2006). A leader-based containment control strategy for multiple unicycles. In Proceedings of the 45th IEEE conference on decision and control (pp. 5968-5973).
[35] Dimarogonas, D. V., & Johansson, K. H. (2008). On the stability of distance-based formation control. In Proceedings of the 47th IEEE conference on decision and control (pp. 1200-1205).
[36] Dimarogonas, D. V., & Johansson, K. H. (2009). Further results on the stability of distance-based multi-robot formations. In Proceedings of the 2009 American control conference (pp. 2972-2977).
[37] Dimarogonas, D. V.; Johansson, K. H., Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control, Automatica, 46, 4, 695-700, (2010) · Zbl 1193.93059
[38] Dimarogonas, D. V.; Kyriakopoulos, K. J., On the rendezvous problem for multiple nonholonomic agents, IEEE Transactions on Automatic Control, 52, 5, 916-922, (2007) · Zbl 1366.93401
[39] Dimarogonas, D. V.; Kyriakopoulos, K. J., Connectedness preserving distributed swarm aggregation for multiple kinematic robots, IEEE Transactions on Robotics, 24, 5, 1213-1223, (2008)
[40] Dimarogonas, D. V.; Kyriakopoulos, K. J., A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems, Automatica, 44, 10, 2648-2654, (2008) · Zbl 1155.93355
[41] Dimarogonas, D. V.; Kyriakopoulos, K. J., Inverse agreement protocols with application to distributed multi-agent dispersion, IEEE Transactions on Automatic Control, 54, 3, 657-663, (2009) · Zbl 1367.93392
[42] Dimarogonas, D. V.; Tsiotras, P.; Kyriakopoulos, K. J., Leader-follower cooperative attitude control of multiple rigid bodies, Systems & Control Letters, 58, 6, 429-435, (2009) · Zbl 1161.93002
[43] Do, K.; Pan, J., Nonlinear formation control of unicycle-type mobile robots, Robotics and Autonomous Systems, 55, 3, 191-204, (2007)
[44] Dong, W., & Farrell, J. A. (2008a). Consensus of multiple nonholonomic systems. In Proceedings of the 47th IEEE conference on decision and control (pp. 2270-2275).
[45] Dong, W.; Farrell, J. A., Cooperative control of multiple nonholonomic mobile agents, IEEE Transactions on Automatic Control, 53, 6, 1434-1448, (2008) · Zbl 1367.93226
[46] Dörfler, F., & Francis, B. A. (2009). Formation control of autonomous robots based on cooperative behavior. In Proceedings of the 2009 European control conference (pp. 2432-2437).
[47] Dörfler, F.; Francis, B. A., Geometric analysis of the formation problem for autonomous robots, IEEE Transactions on Automatic Control, 55, 10, 2379-2384, (2010) · Zbl 1368.93421
[48] Eren, T., Formation shape control based on bearing rigidity, International Journal of Control, 85, 9, 1361-1379, (2012) · Zbl 1417.93112
[49] Eren, T., Whiteley, W., Anderson, B. D. O., Morse, A. S., & Belhumeur, P. N. (2005). Information structures to secure control of rigid formations with leader-follower architecture. In Proceedings of the 2005 American control conference (pp. 2966-2971).
[50] Fax, J. A., & Murray, R.M. (2002). Graph Laplacians and stabilization of vehicle formations. In Proceedings of the 15th IFAC world congress (pp. 283-288).
[51] Fax, J. A.; Murray, R. M., Information flow and cooperative control of vehicle formations, IEEE Transactions on Automatic Control, 49, 9, 1465-1476, (2004) · Zbl 1365.90056
[52] Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A.; Ji, M., Laplacian sheep: A hybrid, stop-go policy for leader-based containment control, (Hybrid systems: computation and control, (2006), Springer), 212-226 · Zbl 1178.68595
[53] Gazi, V.; Passino, K. M., Stability analysis of swarms, IEEE Transactions on Automatic Control, 48, 4, 692-697, (2003) · Zbl 1365.92143
[54] Godsil, C. D.; Royle, G., Algebraic graph theory, (2001), Springer · Zbl 1026.05046
[55] Hendrickx, J.; Anderson, B. D.O.; Delvenne, J.; Blondel, V., Directed graphs for the analysis of rigidity and persistence in autonomous agent systems, International Journal of Robust and Nonlinear Control, 17, 10-11, 960-981, (2007) · Zbl 1266.68182
[56] Hong, Y.; Hu, J.; Gao, L., Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42, 7, 1177-1182, (2006) · Zbl 1117.93300
[57] Horn, R.; Johnson, C., Matrix analysis, (1990), Cambridge University Press · Zbl 0704.15002
[58] Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, 48, 6, 988-1001, (2003) · Zbl 1364.93514
[59] Ji, M.; Egerstedt, M., Distributed coordination control of multiagent systems while preserving connectedness, IEEE Transactions on Robotics, 23, 4, 693-703, (2007)
[60] Ji, M.; Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A., Containment control in mobile networks, IEEE Transactions on Automatic Control, 53, 8, 1972-1975, (2008) · Zbl 1367.93398
[61] Kang, S. M., Park, M.-C., Lee, B.-H., & Ahn, H.-S. (2014). Distance-based formation control with a single moving leader. In Proceedings of the 2014 American control conference (pp. 305-310).
[62] Khalil, H., Nonlinear systems, (1996), Prentice-Hall Upper Saddle River, NJ
[63] Kim, T.-H.; Sugie, T., Cooperative control for target-capturing task based on a cyclic pursuit strategy, Automatica, 43, 8, 1426-1431, (2007) · Zbl 1130.93387
[64] Krick, L., Broucke, M. E., & Francis, B. A. (2008). Stabilization of infinitesimally rigid formations of multi-robot networks. In Proceedings of the 47th IEEE conference on decision and control (pp. 477-482).
[65] Krick, L.; Broucke, M. E.; Francis, B. A., Stabilization of infinitesimally rigid formations of multi-robot networks, International Journal of Control, 82, 3, 423-439, (2009) · Zbl 1168.93306
[66] Laub, A., Matrix analysis for scientists and engineers, (2004), Society for Industrial Mathematics
[67] Lee, B.-H., Lee, S.-J., Park, M.-C., Oh, K.-K., & Ahn, H.-S. (2013). Nonholonomic control of distance-based cyclic polygon formation. In Proceedings of the Asian control conference (pp. 1-4).
[68] Leonard, N., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE conference on decision and control. (pp. 2968-2973) Vol. 3.
[69] Lewis, M. A.; Tan, K. H., High precision formation control of mobile robots using virtual structures, Autonomous Robots, 4, 4, 387-403, (1997)
[70] Li, Z.; Duan, Z.; Chen, G.; Huang, L., Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Transactions on Circuits and Systems I, 57, 1, 213-224, (2010)
[71] Li, Z.; Ren, W.; Liu, X.; Fu, M., Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders, International Journal of Robust and Nonlinear Control, 23, 5, 534-547, (2013) · Zbl 1284.93019
[72] Lin, Z.; Broucke, M.; Francis, B. A., Local control strategies for groups of mobile autonomous agents, IEEE Transactions on Automatic Control, 49, 4, 622-629, (2004) · Zbl 1365.93208
[73] Lin, Z.; Francis, B. A.; Maggiore, M., Necessary and sufficient graphical conditions for formation control of unicycles, IEEE Transactions on Automatic Control, 50, 1, 121-127, (2005) · Zbl 1365.93324
[74] Lin, Z.; Francis, B.; Maggiore, M., State agreement for continuous-time coupled nonlinear systems, SIAM Journal on Control and Optimization, 46, 1, 288-307, (2007) · Zbl 1141.93032
[75] Lojasiewicz, S., Sur LES ensembles semi-analytiques 2, Actes du Congres International des Mathematiciens, 237-241, (1970)
[76] Marshall, J.; Broucke, M. E.; Francis, B. A., Formations of vehicles in cyclic pursuit, IEEE Transactions on Automatic Control, 49, 11, 1963-1974, (2004) · Zbl 1366.91027
[77] Mei, J., Ren, W., & Ma, G. 2011. Containment control for multiple Euler-Lagrange systems with parametric uncertainties in directed networks. In Proceedings of the 2011 American control conference (pp. 2186-2191).
[78] Meng, Z.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 12, 2092-2099, (2010) · Zbl 1205.93010
[79] Mesbahi, M.; Egerstedt, M., Graph theoretic methods in multiagent networks, (2010), Princeton University Press · Zbl 1203.93001
[80] Moreau, L. (2004). Stability of continuous-time distributed consensus algorithms. In Proceedings of the 43rd IEEE conference on decision and control (pp. 3998-4003).
[81] Moreau, L., Stability of multiagent systems with time-dependent communication links, IEEE Transactions on Automatic Control, 50, 2, 169-182, (2005) · Zbl 1365.93268
[82] Oh, K.-K., & Ahn, H.-S. (2011a). Distance-based control of cycle-free persistent formations. In Proceedings of the 2011 IEEE international symposium on intelligent control (pp. 816-821).
[83] Oh, K.-K., & Ahn, H.-S. (2011b). Distance-based formation control using Euclidean distance dynamics matrix: general cases. In Proceedings of the 2011 American control conference (pp. 4816-4821).
[84] Oh, K.-K., & Ahn, H.-S. (2011c). Distance-based formation control using Euclidean distance dynamics matrix: three-agent case. In Proceedings of the 2011 American control conference (pp. 4810-4815).
[85] Oh, K.-K., & Ahn, H.-S. (2011d). Formation control of mobile agent groups based on localization. In Proceedings of the 2011 IEEE international symposium on intelligent control (pp. 822-827).
[86] Oh, K.-K.; Ahn, H.-S., Formation control of mobile agents based on inter-agent distance dynamics, Automatica, 47, 10, 2306-2312, (2011) · Zbl 1228.93014
[87] Oh, K.-K., & Ahn, H.-S. (2012). Formation control of mobile agents without an initial common sense of orientation. In Proceedings of the IEEE 51st conference on decision and control (pp. 1428-1432).
[88] Oh, K.-K.; Ahn, H.-S., Formation control of mobile agents based on distributed position estimation, IEEE Transactions on Automatic Control, 58, 3, 737-742, (2013) · Zbl 1369.93422
[89] Oh, K.-K.; Ahn, H.-S., Distance-based undirected formations of single- and double-integrator modeled agents in \(n\)-dimensional space, International Journal of Robust and Nonlinear Control, 24, 12, 1809-1820, (2014) · Zbl 1301.93011
[90] Oh, K.-K.; Ahn, H.-S., Formation control and network localization via orientation alignment, IEEE Transactions on Automatic Control, 59, 2, 540-545, (2014) · Zbl 1360.93052
[91] Okubo, A., Dynamical aspects of animal grouping: swarms, schools, flocks, and herds, Advances in Biophysics, 22, 1-94, (1986)
[92] Olfati-Saber, R., Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Transactions on Automatic Control, 51, 3, 401-420, (2006) · Zbl 1366.93391
[93] Olfati-Saber, R.; Fax, J. A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 95, 1, 215-233, (2007) · Zbl 1376.68138
[94] Olfati-Saber, R., & Murray, R.M. (2002). Distributed cooperative control of multiple vehicle formations using structural potential functions. In Proceedings of the 15th IFAC world congress (pp. 346-352).
[95] Olfati-Saber, R., & Murray, R.M. (2003). Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. In Proceedings of the 42nd IEEE conference on decision and control. Vol. 2 (pp. 2022-2028).
[96] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[97] Park, M.-C., Jeong, K., & Ahn, H.-S. (2013). Control of undirected four-agent formations in 3-dimensional space. In Proceedings of the 2013 IEEE conference on decision and control (pp. 1461-1465).
[98] Park, M.-C.; Jeong, K.; Ahn, H.-S., Formation stabilization and resizing based on the control of inter-agent distances, International Journal of Robust and Nonlinear Control, 1-15, (2014), (in press)
[99] Park, M.-C., Oh, K.-K., & Ahn, H.-S. (2012). Modified gradient control for acyclic minimally persistent formations to escape from collinear position. In Proceedings of the IEEE 51st conference on decision and control (pp. 1423-1427).
[100] Ren, W., Multi-vehicle consensus with a time-varying reference state, Systems & Control Letters, 56, 7, 474-483, (2007) · Zbl 1157.90459
[101] Ren, W.; Atkins, E., Distributed multi-vehicle coordinated control via local information exchange, International Journal of Robust and Nonlinear Control, 17, 10-11, 1002-1033, (2007) · Zbl 1266.93010
[102] Ren, W.; Beard, R. W., Formation feedback control for multiple spacecraft via virtual structures, IET Control Theory and Applications, 151, 3, 357-368, (2004)
[103] Ren, W., Beard, R.W., & Atkins, E. (2005). A survey of consensus problems in multi-agent coordination. In Proceedings of the 2005 American control conference (pp. 1859-1864).
[104] Ren, W.; Beard, R. W.; Atkins, E., Information consensus in multivehicle cooperative control, IEEE Control Systems Magazine, 27, 2, 71-82, (2007)
[105] Ren, W.; Beard, R. W.; McLain, T. W., Coordination variables and consensus building in multiple vehicle systems, (Cooperative control, (2005), Springer), 171-188
[106] Ren, W.; Cao, Y., Distributed coordination of multi-agent networks: emergent problems, models, and issues, (2010), Springer
[107] Ren, W.; Moore, K. L.; Chen, Y. Q., High-order and model reference consensus algorithms in cooperative control of multivehicle systems, Journal of Dynamic Systems, Measurement and Control, 129, 5, 678, (2007)
[108] Reynolds, C. W., Flocks, herds, and schools: a distributed behavioral model, Computer Graphics, 21, 4, (1987)
[109] Scharf, D., Hadaegh, F. Y., & Ploen, S. (2004). A survey of spacecraft formation flying guidance and control. Part II: control. In Proceedings of the 2004 American control conference. (pp. 2976-2985) Vol. 4.
[110] Sinha, A.; Ghose, D., Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents, IEEE Transactions on Automatic Control, 51, 11, 1819-1824, (2006) · Zbl 1366.93063
[111] Smith, S. L.; Broucke, M. E.; Francis, B. A., A hierarchical cyclic pursuit scheme for vehicle networks, Automatica, 41, 6, 1045-1053, (2005) · Zbl 1091.93550
[112] Smith, S. L., Broucke, M. E., & Francis, B. A. (2006). Stabilizing a multi-agent system to an equilateral polygon formation. In Proceedings of the 17th international symposium on mathematical theory of networks and systems (pp. 2415-2424).
[113] Strogatz, S. H., Sync: the emerging science of spontaneous order, (2003), Hyperion
[114] Summers, T. H., Yu, C., Anderson, B. D. O., & Dasgupta, S. (2009). Formation shape control: global asymptotic stability of a four-agent formation. In Proceedings of the 48th IEEE conference on decision and control and the 28th Chinese control conference (pp. 3002-3007).
[115] Summers, T. H.; Yu, C.; Dasgupta, S.; Anderson, B. D.O., Control of minimally persistent leader-remote-follower and coleader formations in the plane, IEEE Transactions on Automatic Control, 56, 12, 2778-2792, (2011) · Zbl 1368.93004
[116] Tan, K. H., & Lewis, M. A. (1996). Virtual structures for high-precision cooperative mobile robotic control. In Proceedings of the 1996 IEEE/RSJ international conference on intelligent robots and systems. (pp. 132-139) Vol. 1.
[117] Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003a). Stable flocking of mobile agents, part I: Fixed topology. In Proceedings of the 42nd IEEE conference on decision and control. (pp. 2010-2015) Vol. 2.
[118] Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003b). Stable flocking of mobile agents part II: dynamic topology. In Proceedings of the 42nd IEEE conference on decision and control. (pp. 2016-2021) Vol. 2.
[119] Tanner, H. G.; Jadbabaie, A.; Pappas, G. J., Flocking in fixed and switching networks, IEEE Transactions on Automatic Control, 52, 5, 863-868, (2007) · Zbl 1366.93414
[120] Tanner, H. G., Pappas, G. J., & Kumar, V. (2002). Input-to-state stability on formation graphs. In Proceedings of the 41st IEEE conference on decision and control.(pp. 2439-2444) Vol. 3.
[121] Tanner, H. G.; Pappas, G. J.; Kumar, V., Leader-to-formation stability, IEEE Transactions on Robotics and Automation, 20, 3, 443-455, (2004)
[122] Tay, T. S.; Whiteley, W., Generating isostatic frameworks, Structural Topology, 11, (1985) · Zbl 0574.51025
[123] Trinh, M. H., Oh, K.-K., & Ahn, H.-S. (2014). Angle-based control of directed acyclic formations with three-leaders. In Proceedings of the 2014 international conference on mechatronics and control, ICMC (pp. 2268-2271).
[124] Tuna, S. E. 2008. LQR-based coupling gain for synchronization of linear systems. ArXiv Preprint arXiv:0801.3390.
[125] van den Broek, T. H. A., van de Wouw, N., & Nijmeijer, H. (2009). Formation control of unicycle mobile robots: a virtual structure approach. In Proceedings of the 48th IEEE conference on decision and control and the 28th Chinese control conference (pp. 8328-8333).
[126] Wang, C.; Xie, G.; Cao, M., Forming circle formations of anonymous mobile agents with order preservation, IEEE Transactions on Automatic Control, 58, 12, 3248-3254, (2013)
[127] Wen, W.; Duan, Z.; Ren, W.; Chen, G., Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications, International Journal of Robust and Nonlinear Control, 24, 16, 2438-2457, (2014) · Zbl 1302.93018
[128] Young, B., Beard, R.W., & Kelsey, J. (2001). A control scheme for improving multi-vehicle formation maneuvers. In Proceedings of the 2001 American control conference (pp. 704-709).
[129] Yu, C.; Anderson, B. D.O.; Dasgupta, S.; Fidan, B., Control of minimally persistent formations in the plane, SIAM Journal on Control and Optimization, 48, 1, 206-233, (2009) · Zbl 1182.93013
[130] Zhang, H.; Lewis, F. L.; Das, A., Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback, IEEE Transactions on Automatic Control, 56, 8, 1948-1952, (2011) · Zbl 1368.93265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.