×

zbMATH — the first resource for mathematics

On the vortex filament conjecture for Euler flows. (English) Zbl 1371.35205
In this paper the authors consider the evolution of a vortex filament in an incompressible ideal fluid. The fluid motion is described by the Euler equation. The authors are mainly interested in the case where the initial vorticity is concentrated in a tube of radius \(\varepsilon \ll 1 \) around a smooth curve in \({\mathbb R}^{3}\). Then they pose the following two questions: 1. Does the vorticity continue to concentrate around some curve at later times ?
2. If so, how does the curve evolve ?
It can be proved that the curve evolves to leading order by binormal curvature flow. The used approach combines new estimates on the distance of the corresponding Hamiltonian-Poisson structures with stability estimates recently developed by the first author (partially). The bibliography contains 33 items. The authors give an appropriate overview on the problem. The paper is self-contained and reads good.

MSC:
35Q31 Euler equations
35B45 A priori estimates in context of PDEs
35B35 Stability in context of PDEs
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ambrosetti, A.; Struwe, M., Existence of steady vortex rings in an ideal fluid, Arch. Ration. Mech. Anal., 108, 97-109, (1989) · Zbl 0694.76012
[2] Benedetto, D.; Caglioti, E.; Marchioro, C., On the motion of a vortex ring with a sharply concentrated vorticity, Math. Methods Appl. Sci., 23, 147-168, (2000) · Zbl 0956.35109
[3] Buckmaster, T.; De Lellis, C.; Isett, P.; Székelyhidi, J.L., Anomalous dissipation for 1/5-Hölder Euler flows, Ann. Math. (2), 182, 127-172, (2015) · Zbl 1330.35303
[4] Da Rios, L., Sul moto d’un liquido indefinito con unfiletto vorticoso di forma qualunque, Rendiconti del CircoloMatematico di Palermo (1884-1940, 22, 117-135, (1906) · JFM 37.0764.01
[5] Hoz, F.; Vega, L., Vortex filament equation for a regular polygon, Nonlinearity, 27, 3031-3057, (2014) · Zbl 1339.35300
[6] De Lellis, C.; Székelyhidi J., L., The eulerequations as a differential inclusion, Ann. Math. (2), 170, 1417-1436, (2009) · Zbl 1350.35146
[7] De Lellis, C.; Székelyhidi, J.L., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195, 225-260, (2010) · Zbl 1192.35138
[8] Enciso, A.; Peralta-Salas, D., Existence of knotted vortex tubes in steady Euler flows, Acta Math., 214, 61-134, (2015) · Zbl 1317.35184
[9] Enciso, A.; Peralta-Salas, D., Knotted vortex lines and vortex tubes in stationary fluid flows, Eur. Math. Soc. Newsl., 96, 26-33, (2015) · Zbl 1321.35182
[10] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992 · Zbl 0804.28001
[11] Federer, H.: Geometric measure theory. DieGrundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969 · Zbl 0004.37305
[12] Fraenkel, L.E.; Berger, M.S., A global theory of steady vortex rings in an ideal fluid, Acta Math., 132, 13-51, (1974) · Zbl 0282.76014
[13] Jerrard R., L., Vortex filament dynamics for Gross-pitaevskytype equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1, 733-768, (2002) · Zbl 1170.35318
[14] Jerrard, R.L., Smets, D.: On Schrödinger maps from\(T\)\^{1} to \(S\)\^{2}. Ann. Sci. Éc. Norm. Supér. (4), (45)(4) (2012), 637-680 (2013) · Zbl 1308.58023
[15] Jerrard, R.L.; Smets, D., On the motion of a curve by its binormal curvature, J. Eur. Math. Soc. (JEMS), 17, 1487-1515, (2015) · Zbl 1327.53086
[16] Keener, J.P., Knotted vortex filaments in an ideal fluid, J. Fluid Mech., 211, 629-651, (1990) · Zbl 0686.76014
[17] Khesin, B.: Symplectic structures and dynamics on vortexmembranes. Mosc. Math. J. 12(2), 413-434, 461-462 (2012) · Zbl 1258.35162
[18] Levi-Civita, T., Attrazione newtoniana dei tubi sottili evortici filiformi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1, 1-33, (1932) · JFM 58.0873.02
[19] Levi-Civita, T., Attrazione newtoniana dei tubi sottili evortici filiformi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1, 229-250, (1932) · Zbl 0004.37305
[20] Majda, A.J.; Bertozzi, A.L.: Vorticity and Incompressible Flow, vol. 27. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002 · Zbl 1192.35138
[21] Marchioro, C.; Pulvirenti, M., Euler evolution for singular initial data and vortex theory, Commun. Math. Phys., 91, 563-572, (1983) · Zbl 0529.76023
[22] Marsden, J., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Phys. D7(1-3), 305-323 (1983). Order in chaos (Los Alamos, N.M., 1982) · Zbl 1317.35184
[23] Ricca, R.L., Rediscovery of Da Rios equations, Nature, 352, 561-562, (1991)
[24] Rudin, W.: Functional analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York, 1991 · Zbl 0867.46001
[25] Saffman, P.G.: Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York, 1992 · Zbl 1330.35303
[26] Scheffer, V., An inviscid flow with compact support in space-time, J. Geom. Anal., 3, 343-401, (1993) · Zbl 0836.76017
[27] Shashikanth, B.N.: Vortex dynamics in \({\mathbb{R}^{4}}\). J. Math. Phys. 53(1), 013103, 21 (2012) · Zbl 1273.76069
[28] Shnirelman, A., On the nonuniqueness of weak solution of the Euler equation, Commun. Pure Appl. Math., 50, 1261-1286, (1997) · Zbl 0909.35109
[29] Shnirelman, A., Weak solutions with decreasing energy of incompressible Euler equations, Commun. Math. Phys., 210, 541-603, (2000) · Zbl 1011.35107
[30] Sogge, C.D.: Fourier integrals in classical analysis, vol. 105. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993 · Zbl 0783.35001
[31] Székelyhidi, L.; Wiedemann, E., Young measures generated by ideal incompressible fluid flows, Arch. Ration. Mech. Anal., 206, 333-366, (2012) · Zbl 1256.35072
[32] Thomson(Lord Kelvin), W., Vortex statics, Proc. R. Soc. Edinb., 9, 59-73, (1875) · JFM 08.0613.01
[33] Wiedemann, E., Existence of weak solutions for the incompressible Euler equations, Ann. Inst. H. PoincaréAnal. Non Linéaire, 28, 727-730, (2011) · Zbl 1228.35172
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.