×

zbMATH — the first resource for mathematics

A set-operad of formal fractions and dendriform-like sub-operads. (English) Zbl 1371.18004
Authors’ abstract: We introduce an operad of formal fractions, abstracted from the Mould operads and containing both the Dendriform and the Tridendriform operads. We consider the smallest set-operad contained in this operad and containing four specific elements of arity two, corresponding to the generators and the associative elements of the Dendriform and Tridendriform operads. We obtain a presentation of this operad (by binary generators and quadratic relations) and an explicit combinatorial description using a new kind of bi-coloured trees. Similar results are also presented for related symmetric operads.

MSC:
18D50 Operads (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergeron, F.; Labelle, G.; Leroux, P., Combinatorial species and tree-like structures, (1998), Cambridge University Press · Zbl 0888.05001
[2] Chapoton, F., The anticyclic operad of moulds, Int. Math. Res. Not. IMRN, 20, (2007) · Zbl 1149.18004
[3] Chapoton, F., Une opérade anticyclique sur LES arbustes, Ann. Math. Blaise Pascal, 17, 1, 17-45, (2010) · Zbl 1202.18005
[4] Chapoton, F., A bijection between shrubs and series-parallel posets, (20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc. Nancy, (2008)), 227-234 · Zbl 1393.05051
[5] Chapoton, F.; Hivert, F.; Novelli, J.-C.; Thibon, J.-Y., An operational calculus for the mould operad, Int. Math. Res. Not. IMRN, 9, (2008) · Zbl 1146.18301
[6] Dotsenko, V.; Khoroshkin, A., Gröbner bases for operads, Duke Math. J., 153, 2, 363-396, (2010) · Zbl 1208.18007
[7] Ecalle, J., A tale of three structures: the arithmetics of multizetas, the analysis of singularities, the Lie algebra ARI, (Differential Equations and the Stokes Phenomenon, (2002), World Sci. Publishing River Edge, NJ), 89-146 · Zbl 1065.11069
[8] Flajolet, P.; Sedgewick, R., Analytic combinatorics, (2009), Cambridge University Press · Zbl 1165.05001
[9] Hivert, F.; Novelli, J.-C.; Thibon, J.-Y., The algebra of binary search trees, Theoret. Comput. Sci., 339, 129-165, (2005) · Zbl 1072.05052
[10] Hoffbeck, E., A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math., 131, 1-2, 87-110, (2010) · Zbl 1207.18009
[11] Leroux, P., An algebraic framework of weighted directed graphs, Int. J. Math. Math. Sci., 58, 3657-3678, (2003) · Zbl 1031.05061
[12] Livernet, M., A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra, 207, 1, 1-18, (2006) · Zbl 1134.17001
[13] Loday, J.-L., La renaissance des opérades, Sém. Bourbaki 1994/95, Astérisque, 237, 3, 47-74, (1996) · Zbl 0866.18007
[14] Loday, J.-L.; Ronco, M. O., Hopf algebra of the planar binary trees, Adv. Math., 139, 2, 293-309, (1998) · Zbl 0926.16032
[15] Loday, J.-L.; Ronco, M. O., Trialgebras and families of polytopes, Contemp. Math., 346, (2004) · Zbl 1065.18007
[16] Loday, J.-L., On the operad of associative algebras with derivation, Georgian Math. J., 17, 347-372, (2010) · Zbl 1237.18007
[17] Loday, J.-L., On the algebra of quasi-shuffles, Manuscripta Math., 123, 1, 79-93, (2007) · Zbl 1126.16029
[18] Loday, J.-L., Inversion of integral series enumerating planar trees, Sém. Lothar. Combin., 53, (2004)
[19] Macdonald, I. G., Symmetric functions and Hall polynomials, (1979), Oxford University Press · Zbl 0487.20007
[20] Menous, F.; Novelli, J.-C.; Thibon, J.-Y., Mould calculus, polyhedral cones and characters of combinatorial Hopf algebras, (2011)
[21] Stein, W. A., Sage mathematics software (version 3.3), (2009), The Sage Development Team
[22] The Sage-Combinat community, Sage-combinat: enhancing sage as a toolbox for computer exploration in algebraic combinatorics, (2008)
[23] Sloane, N. J.A., The on-line encyclopedia of integer sequences · Zbl 1274.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.