×

zbMATH — the first resource for mathematics

Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign. (English. French summary) Zbl 1370.93140
Summary: We study the global approximate controllability properties of a one-dimensional semilinear reaction-diffusion equation governed via the coefficient of the reaction term. It is assumed that both the initial and target states admit no more than finitely many changes of sign. Our goal is to show that any target state, with as many changes of sign in the same order as the given initial data, can be approximately reached in the \(L^2(0, 1)\)-norm at some time \(T>0\). Our method employs shifting the points of sign change by making use of a finite sequence of initial-value pure diffusion problems.

MSC:
93C20 Control/observation systems governed by partial differential equations
35K55 Nonlinear parabolic equations
35K10 Second-order parabolic equations
35K57 Reaction-diffusion equations
35K58 Semilinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fattorini, H. O.; Russell, D. L., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43, 272-292, (1971) · Zbl 0231.93003
[2] Khapalov, A. Y., Controllability of partial differential equations governed by multiplicative controls, Lect. Notes Math., vol. 1995, (2010), Springer-Verlag Berlin · Zbl 1210.93005
[3] Friedman, A., PDE problems arising in mathematical biology, Netw. Heterog. Media, 7, 4, 691-703, (2012) · Zbl 1260.49001
[4] Perthame, B., Some mathematical aspects of tumor growth and therapy, (International Congress of Mathematicians, Seoul, South Korea, (Aug. 2014)) · Zbl 1373.35322
[5] Díaz, J. I.; Tello, J. I., Mathematical analysis, controllability and numerical simulation of a simple model of avascular tumor growth, (Handbook of Numerical Analysis, vol. XII, Handb. Numer. Anal., vol. XII, (2004), North-Holland Amsterdam), 189-230 · Zbl 1224.35335
[6] Alabau-Boussouira, F.; Cannarsa, P.; Fragnelli, G., Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6, 2, 161-204, (2006) · Zbl 1103.35052
[7] Cannarsa, P.; Martinez, P.; Vancostenoble, J., Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47, 1, 1-19, (2008) · Zbl 1168.35025
[8] Ball, J. M.; Marsden, J. E.; Slemrod, M., Controllability for distributed bilinear systems, SIAM J. Control Optim., 20, 4, 575-597, (1982) · Zbl 0485.93015
[9] Khapalov, A. Y., Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM Control Optim. Calc. Var., 7, 269-283, (2002), (electronic) · Zbl 1024.93026
[10] Khapalov, A. Y., Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: a qualitative approach, SIAM J. Control Optim., 41, 6, 1886-1900, (2003) · Zbl 1041.93026
[11] Beauchard, K., Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9), 84, 7, 851-956, (2005) · Zbl 1124.93009
[12] Beauchard, K.; Coron, J.-M., Controllability of a quantum particle in a moving potential well, J. Funct. Anal., 232, 2, 328-389, (2006) · Zbl 1188.93017
[13] Ervedoza, S.; Puel, J.-P., Approximate controllability for a system of Schrödinger equations modeling a single trapped ion, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 26, 6, 2111-2136, (2009) · Zbl 1180.35437
[14] Beauchard, K., Local controllability of a one-dimensional beam equation, SIAM J. Control Optim., 47, 3, 1219-1273, (2008) · Zbl 1172.35325
[15] Fernández, L. A.; Khapalov, A. Y., Controllability properties for the one-dimensional heat equation under multiplicative or nonnegative additive controls with local mobile support, ESAIM Control Optim. Calc. Var., 18, 4, 1207-1224, (2012) · Zbl 1262.35119
[16] Cannarsa, P.; Floridia, G., Approximate controllability for linear degenerate parabolic problems with bilinear control, (Andreucci, D.; Carillo, S.; Fabrizio, M.; Loreti, P.; Sforza, D., Proc. Evolution Equations and Materials with Memory 2010, (2011), Università La Sapienza Roma), 19-36
[17] Cannarsa, P.; Floridia, G., Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions, Commun. Appl. Ind. Math., 2, 2, (2011) · Zbl 1329.93029
[18] Floridia, G., Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differ. Equ., 257, 9, 3382-3422, (2014) · Zbl 1294.93022
[19] Floridia, G., Well-posedness for a class of nonlinear degenerate parabolic equations, Discrete Contin. Dyn. Syst., 455-463, (2015) · Zbl 1381.35087
[20] Cannarsa, P.; Khapalov, A., Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, Discrete Contin. Dyn. Syst., Ser. B, 14, 4, 1293-1311, (2010) · Zbl 1219.93010
[21] Matano, H., Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., 29, 2, 401-441, (1982) · Zbl 0496.35011
[22] Friedman, A., Partial differential equations of parabolic type, (1964), Prentice-Hall, Inc. Englewood Cliffs, N.J. · Zbl 0144.34903
[23] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., vol. 23, (1968), American Mathematical Society Providence, R.I., Translated from Russian by S. Smith
[24] Matano, H.; Punzo, F.; Tesei, A., Front propagation for nonlinear diffusion equations on the hyperbolic space, J. Eur. Math. Soc., 17, 5, 1199-1227, (2015) · Zbl 1322.35065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.