×

zbMATH — the first resource for mathematics

Wave function of the universe. (English) Zbl 1370.83118
Summary: The quantum state of a spatially closed universe can be described by a wave function which is a functional on the geometries of compact three-manifolds and on the values of the matter fields on these manifolds. The wave function obeys the Wheeler-DeWitt second-order functional differential equation. We put forward a proposal for the wave function of the “ground state” or state of minimum excitation: the ground-state amplitude for a three-geometry is given by a path integral over all compact positive-definite four-geometries which have the three-geometry as a boundary. The requirement that the Hamiltonian be Hermitian then defines the boundary conditions for the Wheeler-DeWitt equation and the spectrum of possible excited states. To illustrate the above, we calculate the ground and excited states in a simple minisuperspace model in which the scale factor is the only gravitational degree of freedom, a conformally invariant scalar field is the only matter degree of freedom and \(\Lambda>0\). The ground state corresponds to de Sitter space in the classical limit. There are excited states which represent universes which expand from zero volume, reach a maximum size, and then recollapse but which have a finite (though very small) probability of tunneling through a potential barrier to a de Sitter-type state of continual expansion. The path-integral approach allows us to handle situations in which the topology of the three-manifold changes. We estimate the probability that the ground state in our minisuperspace model contains more than one connected component of the spacelike surface.

MSC:
83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
PDF BibTeX XML Cite
Full Text: DOI