zbMATH — the first resource for mathematics

Relativistic rotator. II. The simplest representation spaces. (English) Zbl 1370.81086
Summary: As a continuation of the preceding paper in which the quantum relativistic rotator was described within the framework of quantum constrained Hamiltonian mechanics, here its simplest representation spaces are derived. They are shown to be discrete direct sums of irreducible representations of the Poincaré group, which shows that hadrons can be interpreted as different mass-spin levels of a quantum relativistic rotator.
For part I, see [].

81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81S05 Commutation relations and statistics as related to quantum mechanics (general)
83C47 Methods of quantum field theory in general relativity and gravitational theory
Full Text: DOI