zbMATH — the first resource for mathematics

Constrained community-based gene regulatory network inference. (English) Zbl 1369.92039

92C42 Systems biology, networks
62P10 Applications of statistics to biology and medical sciences; meta analysis
92D10 Genetics and epigenetics
Full Text: DOI
[1] D. Allocco, I. Kohane, and A. Butte. 2004. Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinf. 5, 1 (2004), 18+.
[2] U. Alon. 2007. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 8, 6 (2007), 450–461. · doi:10.1038/nrg2102
[3] G. Altay, M. Asim, F. Markowetz, and D. E. Neal. 2011. Differential C3NET reveals disease networks of direct physical interactions. BMC Bioinf. 12 (2011), 296. · doi:10.1186/1471-2105-12-296
[4] G. Altay and F. E. Streib. 2010. Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 1 (2010), 132+.
[5] K. Apt. 2009. Principles of Constraint Programming. Cambridge University Press. · Zbl 1187.68131
[6] S. Balaji, M. M. Babu, L. M. Iyer, N. M. Luscombe, and L. Aravind. 2006. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J. Mol. Biol. 360, 1 (2006), 213–227. · doi:10.1016/j.jmb.2006.04.029
[7] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen. 2000. Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics 16, 5 (2000), 412–424. · doi:10.1093/bioinformatics/16.5.412
[8] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. Di Bernardo. 2007. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3 (2007), 78. · doi:10.1038/msb4100158
[9] A. Bauer-Mehren, L. I. Furlong, and F. Sanz. 2009. Pathway databases and tools for their exploitation: Benefits, current limitations and challenges. Mol. Syst. Biol. 5, 1 (2009). · doi:10.1038/msb.2009.47
[10] C. M. Bishop and N. M. Nasrabadi. 2006. Pattern Recognition and Mmachine Learning. Vol. 1. Springer.
[11] R. Bonneau et al. 2006. The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, 5 (2006), R36.
[12] J. C. Borda. 1971. Memoire sur les elections au scrutin.
[13] L. Bortolussi and A. Policriti. 2008. Modeling biological systems in stochastic concurrent constraint programming. Constraints 13, 1–2 (2008). · Zbl 1144.92001 · doi:10.1007/s10601-007-9034-8
[14] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. 1984. Classification and Regression Trees. Chapman & Hall, New York, NY. · Zbl 0541.62042
[15] F. Corblin, E. Fanchon, and L. Trilling. 2010. Applications of a formal approach to decipher discrete genetic networks. BMC Bioinf. 11 (2010), 385. · doi:10.1186/1471-2105-11-385
[16] F. Corblin, S. Tripodi, E. Fanchon, D. Ropers, and L. Trilling. 2009. A declarative constraint-based method for analyzing discrete genetic regulatory networks. Biosystems 98, 2 (2009), 91–104. · doi:10.1016/j.biosystems.2009.07.007
[17] H. De Jong. 2002. Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9, 1 (2002), 67–103. · doi:10.1089/10665270252833208
[18] R. de Matos Simoes and F. Emmert-Streib. 2012. Bagging statistical network inference from large-scale gene expression data. PloS ONE 7, 3 (2012), e33624+. · Zbl 1417.92042
[19] P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. 1999. Linear modeling of mRNA expression levels during CNS development and injury. In Pacific Symposium on Biocomputing. 41–52.
[20] F. Eduati, J. De Las Rivas, G. Di Camillo, G. Toffolo, and J. Saez-Rodriguez. 2012. Integrating literature-constrained and data-driven inference of signalling networks. Bioinformatics 28, 18 (2012), 2311–2317. · doi:10.1093/bioinformatics/bts363
[21] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. 2004. Least angle regression. Ann. Statist 32, 2 (2004), 407–499. · Zbl 1091.62054 · doi:10.1214/009053604000000067
[22] F. Fages, G. Batt, E. D. Maria, D. Jovanovska, A. Rizk, and S. Soliman. 2010. Computational systems biology in BIOCHAM. ERCIM News 2010, 82, 36.
[23] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner. 2007. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 1 (2007), e8.
[24] F. Fioretto and E. Pontelli. 2013. Constraint programming in community-based gene regulatory network inference. In CMSB 2013 (LNBI), Vol. 8130. Springer-Verlag, 135–149.
[25] S. Gama-Castro, V. Jiménez-Jacinto, M. Peralta-Gil, A. Santos-Zavaleta, M.I. Peñaloza-Spinola, B. Contreras-Moreira, J. Segura-Salazar, L. Muñiz-Rascado, I. Martínez-Flores, and H. Salgado. 2008. RegulonDB: Gene regulation model of Escherichia coli K-12 beyond transcription, active annotated promoters and Textpresso navigation. Nucleic Acids Res. 36, D120–D124.
[26] M. Gebser, T. Schaub, S. Thiele, and P. Veber. 2008. Detecting inconsistencies in large biological networks with answer set programming. In Logic Programming, LNCS, Vol. 5366. Springer, Berlin, 130–144. · Zbl 1185.92052 · doi:10.1007/978-3-540-89982-2_19
[27] A. Greenfield, A. Madar, H. Ostrer, and R. Bonneau. 2010. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS ONE 5, 10 (2010), e13397.
[28] N. Guelzim, S. Bottani, P. Bourgine, and F. Képès. 2002. Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 1 (April 2002), 60–63.
[29] M. A. Harris and Gene Ontology Consortium. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, Database issue (2004), D258–D261.
[30] T. Hastie, R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference and Prediction (2nd. ed.). Springer, New York, NY. · Zbl 1273.62005 · doi:10.1007/978-0-387-84858-7
[31] S. Kim, S. Imoto, and S. Miyano. 2003. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 104–113. · Zbl 1112.92322 · doi:10.1007/3-540-36481-1_9
[32] S. K. Kummerfeld and S. A. Teichmann. 2006. DBD: A transcription factor prediction database. Nucleic Acids Res. 34, Suppl. 1 (2006), D74–D81. · Zbl 05437969 · doi:10.1093/nar/gkj131
[33] L. P. Lim, N. C. Lau, P. Garrett-Engele, A. Grimson, J. M. Schelter, J. Castle, D. P. Bartel, P. S. Linsley, and J. M. Johnson. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 7027 (2005), 769–773. · doi:10.1038/nature03315
[34] P. B. Madhamshettiwar, S. R. Maetschke, M. J. Davis, A. Reverter, and M. A. Ragan. 2012. Gene regulatory network inference: Evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med. 4, 5 (1 May 2012), 41+.
[35] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho, and the DREAM5 Consortium. 2012. Wisdom of crowds for robust gene network inference. Nat. Meth. 9, 8 (2012), 796–804. · doi:10.1038/nmeth.2016
[36] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera, and A. Califano. 2006. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf. 7, Suppl. 1 (2006).
[37] N. Meinshausen and P. Bühlmann. 2010. Stability selection. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 72, 4 (Sept. 2010), 417–473.
[38] P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi. 2007. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinf. Sys. Biol. (2007). DOI:10.1155/2007/79879 · Zbl 05735200 · doi:10.1155/2007/79879
[39] M. P. Perrone. 1993. Improving Regression Estimation: Averaging Methods for Variance rReduction with Extensions to General Convex Measure Optimization. Ph.D. dissertation. Brown University, Providence, RI.
[40] R. J. Prill, D. Marbach, J. Saez-Rodriguez, P. K. Sorger, L. G. Alexopoulos, X. Xue, N. D. Clarke, G. Altan-Bonnet, and G. Stolovitzky. 2010. Towards a rigorous assessment of systems biology models: The DREAM3 challenges. PLoS ONE 5, 2 (2010), e9202.
[41] T. Reguly, A. Breitkreutz, L. Boucher, B. Breitkreutz, G. C. Hon, C. L. Myers, A. Parsons, H. Friesen, R. Oughtred, and A. Tong. 2006. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5, 4 (08 June 2006), 11+.
[42] M. Renda and U. Straccia. 2003. Web metasearch: Rank vs. score based rank aggregation methods. In Proceedings of the 2003 ACM Symposium on Applied Computing. ACM, New York, NY, 841–846. · doi:10.1145/952532.952698
[43] T. Schaffter, D. Marbach, and D. Floreano. 2011. GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27, 16 (June 2011), 2263–2270. · doi:10.1093/bioinformatics/btr373
[44] C. Schulte and P. J. Stuckey. 2008. Efficient constraint propagation engines. ACM Trans. Prog. Lang. Syst. 31, 1. · Zbl 05517454 · doi:10.1145/1452044.1452046
[45] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 1 (2002), 1061–4036. · doi:10.1038/ng881
[46] A. Sîrbu, H. J. Ruskin, and M. Crane. 2012. Integrating heterogeneous gene expression data for gene regulatory network modelling. Theor. Biosci. 131, 2 (2012), 95–102.
[47] T. Soh and K. Inoue. 2010. Identifying necessary reactions in metabolic pathways by minimal model generation. In ECAI 2010. IOS Press, Amsterdam, The Netherlands, 277–282. · Zbl 1211.92025
[48] M. J. Song, C. K. Lewis, E. R. Lance, E. J. Chesler, R. K. Yordanova, M. A. Langston, K. H. Lodowski, and S. E. Bergeson. 2009. Reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data. EURASIP J. Bioinf. Syst. Biol. (2009), 5.
[49] N. Sun and H. Zhao. 2009. Reconstructing transcriptional regulatory networks through genomics data. Stat. Meth. Med. Res. 18, 6 (2009), 595–617. · doi:10.1177/0962280209351890
[50] R. Thomas. 1973. Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 3, 563–585. · doi:10.1016/0022-5193(73)90247-6
[51] S. Videla, C. Guziolowski, F. Eduati, S. Thiele, N. Grabe, J. Saez-Rodriguez, and A. Siegel. 2012. Revisiting the training of logic models of protein signaling networks with ASP. In Comput. Meth. Syst. Biol. LNCS, Vol. 7605, 342–361. · Zbl 06158874 · doi:10.1007/978-3-642-33636-2_20
[52] X. Zhou, X. Wang, and E. Dougherty. 2006. Genomic Networks: Statistical Inference from Microarray Data. John Wiley & Sons.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.