×

zbMATH — the first resource for mathematics

An improved momentum exchanged-based immersed boundary-lattice Boltzmann method by using an iterative technique. (English) Zbl 1369.76045
Summary: A novel immersed boundary-lattice Boltzmann method (IB-LBM) is proposed for incompressible viscous flows in complex geometries. Based on the momentum exchanged-based IB-LBM, an iterative technique is introduced to enforce the non-slip boundary condition at the boundary points. Moreover, the proposed IB-LBM overcomes the drawback that the numerical results of the previous work [J. Wu and C. Shu, J. Comput. Phys. 228, No. 6, 1963–1979 (2009; Zbl 1243.76081)] which is affected by the distribution of Lagrangian points. A simple theoretical analysis is developed to obtain the optimal iteration parameters. Numerical results show that the present scheme has second-order accuracy and is not affected by the distribution of Lagrangian points. It also shows that the non-slip boundary condition is satisfied on the boundary. This verifies that our IB-LBM is capable of simulating flow problems with complex boundaries.

MSC:
76M28 Particle methods and lattice-gas methods
76D99 Incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252, (1977) · Zbl 0403.76100
[2] Goldstein, D.; Hadler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366, (1993) · Zbl 0768.76049
[3] Lai, M. C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 705-719, (2000) · Zbl 0954.76066
[4] Fadlun, E.; Verzicco, R.; Orlandi, P.; Yusof, J. M., Combined immersed-boundary finite-difference methods for three dimensional complex flow simulations, J. Comput. Phys., 162, 35-60, (2000) · Zbl 0972.76073
[5] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geomettries, J. Comput. Phys., 171, 132-150, (2001) · Zbl 1057.76039
[6] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 509-534, (1999) · Zbl 0953.76069
[7] Griffith, B. E.; Hornung, R. D.; Maqueen, D. M., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 10-49, (2007) · Zbl 1163.76041
[8] Chen, S. Y.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 1, 329-364, (1998) · Zbl 1398.76180
[9] He, X. Y.; Luo, L. S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6, 6811, (1997)
[10] Feng, Z. G.; Machaelides, E., The immersed bounday-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195, 602-628, (2004) · Zbl 1115.76395
[11] Feng, Z. G.; Machaelides, E., Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys., 202, 20-51, (2005) · Zbl 1076.76568
[12] Niu, X. D.; Shu, C.; Chew, Y. T.; Peng, Y., A momentum exchanged-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A, 354, 173-182, (2006) · Zbl 1181.76111
[13] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys., 228, 1963-1979, (2009) · Zbl 1243.76081
[14] Ren, W. W.; Shu, C.; Wu, J.; Yang, W. M., Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications, Comput. & Fluids, 57, 40-51, (2012) · Zbl 1365.76199
[15] Shu, C.; Ren, W. W.; Yang, W. M., Novel immersed boundary methods for thermal flow problems, Int. J. Heat Fluid Flow, 23, 124-142, (2013) · Zbl 1356.76067
[16] Hu, Y.; Niu, X. D.; Shu, S.; Yuan, H. Z.; Li, M. J., Natural convection in a concentric annulus: a lattice Boltzmann method study with boundary condition-enforced immersed boundary method, Adv. Appl. Math. Mech., 3, 321-336, (2013)
[17] Luo, K.; Wang, Z. L.; Fan, J. R., Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method, Phys. Rev. E, 76, 6, 066709, (2007)
[18] Wang, Z. L.; Fan, J. R.; Luo, K., Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles, Int. J. Multiphase Flow, 34, 3, 283-302, (2008)
[19] Peskin, C. S., The immersed boundary method, Acta Number., 11, 479-517, (2002) · Zbl 1123.74309
[20] Le, D. V.; Khoo, B. C.; Lim, K. M., An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Comput. Methods Appl. Mech. Engrg., 197, 2119-2130, (2008) · Zbl 1158.76407
[21] Su, S. W.; Lai, M. C.; Lin, C. A., An immersed boundary technique for simulating complex flows with rigid boundary, Comput. & Fluids, 36, 313-324, (2007) · Zbl 1177.76299
[22] Chen, D. J.; Lin, K. H.; Lin, C. A., Immersed boundary method based lattice Boltzmann method to simulate 2D and 3D complex geometry flows, Internat. J. Modern Phys. C, 18, 04, 585-594, (2007) · Zbl 1206.76044
[23] Kang, S. K.; Hassan, Y. A., A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries, Internat. J. Numer. Methods Fluids, 66, 9, 1132-1158, (2011) · Zbl 1331.76099
[24] Tritton, D. J., Experiments on the flow past a circular cylinder at low Reynolds number, J. Fluid Mech., 6, 4, 547-567, (1959) · Zbl 0092.19502
[25] Calhoun, D., A Catesian grid method for solving the two-dimensional streamfunction-vorticity equctions in irregular regions, J. Comput. Phys., 168, 231-275, (2002) · Zbl 1130.76371
[26] Lima, A. L.F.; Neto, A. S.; Damascrno, J. J.R., Numerical simulation of two-diemsnional flows over a circular cylinder using the immersed boundary method, J. Comput. Phys., 189, 351-370, (2003) · Zbl 1061.76046
[27] Guo, Z. L.; Zheng, C. G.; Shi, B. S., Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin. Phys., 11, 366-374, (2002)
[28] Zdravkovich, M. M., REVIEW-review of flow interference between two circular cylinders in various arrangements, J. Fluids Eng., 99, 4, 618-633, (1997)
[29] Igarashi, T., Characteristics of the flow around two circular cylinders arranged in tandem. I, JSME Int. J. B Fluid, 24, 323-331, (1981)
[30] Slaouti, A.; Stansby, P. K., Flow around two circular cylinders by the random-vortex method, J. Fluids Struct., 6, 6, 641-670, (1992)
[31] Okajima, A., Flows around two tandem circular cylinders at very high Reynolds numbers, Bull. Japan Soc. Mech. Eng., 22, 166, 504-511, (1979)
[32] Bearman, P. W.; Wadcock, A. J., The interaction between a pair of circular cylinders normal to a stream, J. Fluid Mech., 61, 03, 499-511, (1973)
[33] Zdravkovich, M. M., Review of flow interference between two circular cylinders in various arrangements, Trans. ASME, J. Fluids Eng., 99, 618-633, (1977)
[34] Meneghini, J. R.; Saltara, F.; Siqueira, C. L.R., Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements, J. Fluids Struct., 15, 2, 327-350, (2001)
[35] Ding, H.; Shu, C.; Yeo, K. S., Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods, Internat. J. Numer. Methods Fluids, 53, 2, 305-332, (2007) · Zbl 1105.76041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.