×

Decoupled schemes for a non-stationary mixed Stokes-Darcy model. (English) Zbl 1369.76026

Summary: We study numerical methods for solving a non-stationary mixed Stokes-Darcy problem that models coupled fluid flow and porous media flow. A decoupling approach based on interface approximation via temporal extrapolation is proposed for devising decoupled marching algorithms for the mixed model. Error estimates are derived and numerical experiments are conducted to demonstrate the computational effectiveness of the decoupling approach.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
76S05 Flows in porous media; filtration; seepage
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Todd Arbogast and Dana S. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium, Comput. Geosci. 11 (2007), no. 3, 207 – 218. · Zbl 1186.76660 · doi:10.1007/s10596-007-9043-0
[2] J. Bear, Hydraulics of groundwater, McGraw-Hill, New York, 1979.
[3] G.S. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech. (1967), Vol. 30, pp. 197-207.
[4] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[5] M. Cai, M. Mu, and J. Xu, Decoupled preconditioners for Stokes-Darcy coupling problem with applications in porous media, submitted, 2007.
[6] M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows, Ph.D. dissertation, École Polytechnique Fédérale de Lausanne, 2004.
[7] Marco Discacciati, Edie Miglio, and Alfio Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math. 43 (2002), no. 1-2, 57 – 74. 19th Dundee Biennial Conference on Numerical Analysis (2001). · Zbl 1023.76048 · doi:10.1016/S0168-9274(02)00125-3
[8] Marco Discacciati and Alfio Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci. 6 (2004), no. 2-3, 93 – 103. · Zbl 1299.76252 · doi:10.1007/s00791-003-0113-0
[9] J. Galvis and M. Sarkis, Balancing domain decomposition methods for mortar coupling Stokes-Darcy Systems, Proceedings of the 16th International Conference on Domain Decomposition Methods, 2005. · Zbl 1430.76440
[10] Roland Glowinski, Finite element methods for incompressible viscous flow, Handbook of numerical analysis, Vol. IX, Handb. Numer. Anal., IX, North-Holland, Amsterdam, 2003, pp. 3 – 1176. · Zbl 1040.76001
[11] Yinnian He and Weiwei Sun, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal. 45 (2007), no. 2, 837 – 869. · Zbl 1145.35318 · doi:10.1137/050639910
[12] Ronald H. W. Hoppe, Paulo Porta, and Yuri Vassilevski, Computational issues related to iterative coupling of subsurface and channel flows, Calcolo 44 (2007), no. 1, 1 – 20. · Zbl 1150.76028 · doi:10.1007/s10092-007-0126-z
[13] Willi Jäger and Andro Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math. 60 (2000), no. 4, 1111 – 1127. · Zbl 0969.76088 · doi:10.1137/S003613999833678X
[14] Willi Jäger, Andro Mikelić, and Nicolas Neuss, Asymptotic analysis of the laminar viscous flow over a porous bed, SIAM J. Sci. Comput. 22 (2000), no. 6, 2006 – 2028. · Zbl 0980.35124 · doi:10.1137/S1064827599360339
[15] William J. Layton, Friedhelm Schieweck, and Ivan Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 40 (2002), no. 6, 2195 – 2218 (2003). · Zbl 1037.76014 · doi:10.1137/S0036142901392766
[16] E. Miglio, A. Quarteroni, and F. Saleri, Coupling of free surface and groundwater flows, Computers Fluids (2003), Vol. 32, pp. 73-83. · Zbl 1035.76051
[17] Mo Mu, A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model, SIAM J. Sci. Comput. 18 (1997), no. 4, 1028 – 1039. · Zbl 0894.65046 · doi:10.1137/S1064827595283756
[18] Mo Mu and Jinchao Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 45 (2007), no. 5, 1801 – 1813. · Zbl 1146.76031 · doi:10.1137/050637820
[19] L. E. Payne and B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl. (9) 77 (1998), no. 4, 317 – 354. · Zbl 0906.35067 · doi:10.1016/S0021-7824(98)80102-5
[20] Béatrice Rivière and Ivan Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal. 42 (2005), no. 5, 1959 – 1977. · Zbl 1084.35063 · doi:10.1137/S0036142903427640
[21] P.G. Saffman, On the boundary condition at the interface of a porous medium, Studies in Applied Mathematics (1971), Vol. 1, No. 2, pp. 93-101. · Zbl 0271.76080
[22] Mary Fanett Wheeler, A priori \?\(_{2}\) error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723 – 759. · Zbl 0232.35060 · doi:10.1137/0710062
[23] W. L. Wood, Introduction to numerical methods for water resources, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. · Zbl 0801.76001
[24] J. Xu, Theory of multilevel methods, Ph.D. dissertation, Cornell University, Ithaca, NY, 1989.
[25] J. Xu, M. Mu, and M. Cai, Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-grid Approach, submitted, 2008.
[26] X. Zhu, Numerical methods for a mixed Stokes-Darcy model, Ph.D. dissertation, HKUST, Hong Kong, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.