×

zbMATH — the first resource for mathematics

Primal-dual extragradient methods for nonlinear nonsmooth PDE-constrained optimization. (English) Zbl 1369.49040

MSC:
49M29 Numerical methods involving duality
49J53 Set-valued and variational analysis
49N45 Inverse problems in optimal control
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] V. Azhmyakov and S. Noriega Morales, Proximal point method for optimal control processes governed by ordinary differential equations, Asian J. Control, 12 (2010), pp. 15–25, .
[2] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011, . · Zbl 1218.47001
[3] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145, . · Zbl 1255.68217
[4] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal–dual algorithm, Math. Program., 159 (2016), pp. 253–287, . · Zbl 1350.49035
[5] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, Philadelphia, 1990, . · Zbl 0696.49002
[6] C. Clason, L\(^∞\) fitting for inverse problems with uniform noise, Inverse Problems, 28 (2012), 104007, . · Zbl 1258.65055
[7] C. Clason and B. Jin, A semismooth Newton method for nonlinear parameter identification problems with impulsive noise, SIAM J. Imaging Sci., 5 (2012), pp. 505–536, . · Zbl 1250.65134
[8] C. Clason, B. Kaltenbacher, and D. Wachsmuth, Functional error estimators for the adaptive discretization of inverse problems, Inverse Problems, 32 (2016), 104004, . · Zbl 1354.65111
[9] C. Clason and T. Valkonen, Stability of saddle points via explicit coderivatives of pointwise subdifferentials, Set-Valued Var. Anal., 25 (2017), pp. 69–112. . · Zbl 1367.49011
[10] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer, Berlin, 2001, .
[11] K. Ito and K. Kunisch, Semi-smooth Newton methods for state-constrained optimal control problems, Systems Control Lett., 50 (2003), pp. 221–228, . · Zbl 1157.49311
[12] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, Philadelphia, 2008, . · Zbl 1156.49002
[13] D. Kalise, A. Kröner, and K. Kunisch, Local minimization algorithms for dynamic programming equations, SIAM J. Sci. Comput., 38 (2016), pp. A1587–A1615, .
[14] B. Kaltenbacher, A. Kirchner, and B. Vexler, Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems, Inverse Problems, 27 (2011), 125008, . · Zbl 1231.35306
[15] E. V. Khoroshilova, Extragradient-type method for optimal control problem with linear constraints and convex objective function, Optim. Lett., 7 (2013), pp. 1193–1214, . · Zbl 1273.49005
[16] A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems with a bilinear state equation, J. Comput. Appl. Math., 230 (2009), pp. 781–802, . · Zbl 1178.65071
[17] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer-Verlag, Berlin, 1998, .
[18] A. Schindele and A. Borzì, Proximal methods for elliptic optimal control problems with sparsity cost functional, Appl. Math., 7 (2016), pp. 967–992, .
[19] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, SIAM, Philadelphia, 2011, . · Zbl 1235.49001
[20] T. Valkonen, A primal-dual hybrid gradient method for nonlinear operators with applications to MRI, Inverse Problems, 30 (2014), 055012, . · Zbl 1310.47081
[21] T. Valkonen and T. Pock, Acceleration of the PDHGM on strongly convex subspaces, J. Math. Imaging Vision, Online First (2016), . · Zbl 1382.90080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.