×

Contraction method and lambda-lemma. (English) Zbl 1369.37020

Summary: We reprove the \(\lambda\)-Lemma for finite dimensional gradient flows by generalizing the well-known contraction method proof of the local (un)stable manifold theorem. This only relies on the forward Cauchy problem. We obtain a rather quantitative description of (un)stable foliations which allows to equip each leaf with a copy of the flow on the central leaf – the local (un)stable manifold. These dynamical thickenings are key tools in the author’s recent work [Topol. Methods Nonlinear Anal. 47, No. 2, 641–646 (2016; Zbl 1373.37042)]. The present paper provides their construction.

MSC:

37B35 Gradient-like behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems
37B30 Index theory for dynamical systems, Morse-Conley indices
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)

Citations:

Zbl 1373.37042
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agarwal, R.P., Lakshmikantham, V.: Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, Volume 6 of Series in Real Analysis. World Scientific Publishing Co., Inc., River Edge, NJ (1993) · Zbl 0785.34003 · doi:10.1142/1988
[2] Burghelea, D., Friedlander, L., Kappeler, T.: On the Space of Trajectories of a Generic Vector Field (2011). arXiv:1101.0778 · Zbl 1240.37016
[3] Banyaga, A., Hurtubise, D.: Lectures on Morse Homology, Volume 29 of Kluwer Texts in the Mathematical Sciences. Kluwer Academic Publishers Group, Dordrecht (2004) · Zbl 1080.57001
[4] Bott, R.: Morse theory indomitable. Inst. Hautes Études Sci. Publ. Math. 68, 99-114 (1988) · Zbl 0685.58009 · doi:10.1007/BF02698544
[5] Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory, Volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer, Berlin (1982) · Zbl 0487.47039
[6] Hadamard, J.: Sur l’itération et les solutions asymptotiques des équations différentielles. Bull. Soc. Math. Fr. 29, 224-228 (1901) · JFM 32.0314.01
[7] Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Volume 840 of Lecture Notes in Mathematics. Springer, Berlin (1981) · Zbl 0456.35001
[8] Hirsch, M.W.: Differential Topology. Springer, Heidelberg (1976). Graduate Texts in Mathematics, No. 33 · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[9] Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext, 6th edn. Springer, Heidelberg (2011) · Zbl 1227.53001 · doi:10.1007/978-3-642-21298-7
[10] Lawson Jr, H.B.: Foliations. Bull. Am. Math. Soc. 80, 369-418 (1974) · Zbl 0293.57014 · doi:10.1090/S0002-9904-1974-13432-4
[11] Nicolaescu, L.: An Invitation to Morse Theory. Universitext, 2nd edn. Springer, New York (2011) · Zbl 1238.57001 · doi:10.1007/978-1-4614-1105-5
[12] Palis Jr, J.: On Morse-Smale Diffeomorphisms. PhD thesis, UC Berkeley (1967) · Zbl 1306.37090
[13] Palis Jr, J.: On Morse-Smale dynamical systems. Topology 8, 385-404 (1969) · Zbl 0189.23902 · doi:10.1016/0040-9383(69)90024-X
[14] Palis Jr, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York. An introduction. Translated from the Portuguese by A. K, Manning (1982) · Zbl 0491.58001
[15] Perron, O.: Über Stabilität und asymptotisches Verhalten der integrale von differentialgleichungssystemen. Math. Z. 29, 129-160 (1928) · JFM 54.0456.04 · doi:10.1007/BF01180524
[16] Pesin, Y.B.: Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2004) · Zbl 1098.37024
[17] Qin, L.: An Application of Topological Equivalence to Morse Theory (2011). arXiv:1102.2838
[18] Salamon, D.: Morse theory, the Conley index and Floer homology. Bull. Lond. Math. Soc. 22(2), 113-140 (1990) · Zbl 0709.58011 · doi:10.1112/blms/22.2.113
[19] Shub, M.: Global Stability of Dynamical Systems. Springer, New York (1987). With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy · Zbl 0606.58003
[20] Salamon, D., Weber, J.: Floer homology and the heat flow. Geom. Funct. Anal. 16(5), 1050-1138 (2006) · Zbl 1118.53056 · doi:10.1007/s00039-006-0577-4
[21] Teschl, G.: Ordinary Differential Equations and Dynamical Systems, Volume 140 of Graduate Studies in Mathematics. Online edition, authorized by American Mathematical Society, Providence, RI (2012) · Zbl 1263.34002
[22] Weber, J.: Classical Morse theory revisited I—-backward \[\lambda\] λ-Lemma and homotopy type. Topol. Methods Nonlinear Anal. (to appear). arXiv:1410.0995 · Zbl 1373.37042
[23] Weber, J.: The Morse-Witten complex via dynamical systems. Expo. Math. 24(2), 127-159 (2006) · Zbl 1134.37324 · doi:10.1016/j.exmath.2005.09.001
[24] Weber, J.: Morse homology for the heat flow. Math. Z. 275(1-2), 1-54 (2013) · Zbl 1319.53104 · doi:10.1007/s00209-012-1121-x
[25] Weber, J.: A backward \[\lambda\] λ-lemma for the forward heat flow. Math. Ann. 359(3-4), 929-967 (2014) · Zbl 1306.37090 · doi:10.1007/s00208-014-1026-6
[26] Weber, J.: Stable Foliations and Semi-Flow Morse Homology. Submitted (2014). arXiv:1408.3842 · Zbl 1497.58014
[27] Zehnder, E.: Lectures on Dynamical Systems. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2010) · Zbl 1195.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.