zbMATH — the first resource for mathematics

Scalable BDDC algorithms for cardiac electromechanical coupling. (English) Zbl 1368.92005
Lee, Chang-Ock (ed.) et al., Domain decomposition methods in science and engineering XXIII. Proceedings of the 23rd international conference, Jeju Island, Korea, July 6–10, 2015. Cham: Springer (ISBN 978-3-319-52388-0/hbk; 978-3-319-52389-7/ebook). Lecture Notes in Computational Science and Engineering 116, 261-268 (2017).
Summary: The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.
For the entire collection see [Zbl 1371.65003].

92-08 Computational methods for problems pertaining to biology
92C30 Physiology (general)
92C10 Biomechanics
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI
[1] S. Balay et al., PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016
[2] D. Chapelle et al., An energy-preserving muscle tissue model: formulation and compatible discretizations. J. Multiscale Comput. Eng. 10, 189–211 (2012) · doi:10.1615/IntJMultCompEng.2011002360
[3] P. Colli Franzone, L.F. Pavarino, S. Scacchi, Mathematical Cardiac Electrophysiology. MSA, vol. 13 (Springer, New York, 2014) · Zbl 1318.92002
[4] P. Colli Franzone, L.F. Pavarino, S. Scacchi, Bioelectrical effects of mechanical feedbacks in a strongly coupled cardiac electro-mechanical model. Math. Models Methods Appl. Sci. 26, 27–57 (2016) · Zbl 1355.92021 · doi:10.1142/S0218202516500020
[5] C.R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25, 246–258 (2003) · Zbl 1038.65039 · doi:10.1137/S1064827502412887
[6] T.S.E. Eriksson et al., Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18, 592–606 (2013) · doi:10.1177/1081286513485779
[7] V. Gurev et al., Models of cardiac electromechanics based on individual hearts imaging data: Image-based electromechanical models of the heart. Biomech. Model Mechanobiol. 10, 295–306 (2011) · doi:10.1007/s10237-010-0235-5
[8] V.E. Henson, U.M. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002) · Zbl 0995.65128 · doi:10.1016/S0168-9274(01)00115-5
[9] S. Land et al., An analysis of deformation-dependent electromechanical coupling in the mouse heart. J. Physiol. 590, 4553–4569 (2012) · doi:10.1113/jphysiol.2012.231928
[10] J. Mandel, C.R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Linear Algebra Appl. 10, 639–659 (2003) · Zbl 1071.65558 · doi:10.1002/nla.341
[11] L.F. Pavarino, S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31, 420–443 (2008) · Zbl 1185.65179 · doi:10.1137/070706148
[12] L.F. Pavarino, S. Zampini, O.B. Widlund, BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comput. 32 (6), 3604–3626 (2010) · Zbl 1278.74058 · doi:10.1137/100791701
[13] L.F. Pavarino, S. Scacchi, S. Zampini, Newton-Krylov-BDDC solvers for non-linear cardiac mechanics. Comput. Methods Appl. Mech. Eng. 295, 562–580 (2015) · doi:10.1016/j.cma.2015.07.009
[14] G. Plank et al., Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54, 585–596 (2007) · doi:10.1109/TBME.2006.889181
[15] S. Rossi et al., Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Methods Biomed. Eng. 28, 761–788 (2012) · doi:10.1002/cnm.2473
[16] J. Sundnes et al., Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations. Comput. Methods Biomech. Biomed. Eng. 17, 604–615 (2014) · doi:10.1080/10255842.2012.704368
[17] K.H. ten Tusscher et al., A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–H1589 (2004) · doi:10.1152/ajpheart.00794.2003
[18] A. Toselli, O.B. Widlund, Domain Decomposition Methods: Algorithms and Theory (Springer, Berlin, 2004) · Zbl 1069.65138
[19] F.J. Vetter, A.D. McCulloch, Three-dimensional stress and strain in passive rabbit left ventricle: a model study. Ann. Biomed. Eng. 28, 781–792 (2000) · doi:10.1114/1.1289469
[20] S. Zampini, Dual-primal methods for the cardiac bidomain model. Math. Models Methods Appl. Sci. 24, 667–696 (2014) · Zbl 1291.92007 · doi:10.1142/S0218202513500632
[21] S. Zampini, PCBDDC: a class of robust dual-primal preconditioners in PETSc. SIAM J. Sci. Comput. 38 (5), S282–S306 (2016) · Zbl 1352.65632 · doi:10.1137/15M1025785
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.