×

Entanglement entropy from the truncated conformal space. (English) Zbl 1367.81018

Summary: A new numerical approach to entanglement entropies of the Rényi type is proposed for one-dimensional quantum field theories. The method extends the truncated conformal spectrum approach, and we will demonstrate that it is especially suited to study the crossover from massless to massive behavior when the subsystem size is comparable to the correlation length. We apply it to different deformations of massless free fermions, corresponding to the scaling limit of the Ising model in transverse and longitudinal fields. For massive free fermions the exactly known crossover function is reproduced already in very small system sizes. The new method treats ground states and excited states on the same footing, and the applicability for excited states is illustrated by reproducing Rényi entropies of low-lying states in the transverse field Ising model.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81T99 Quantum field theory; related classical field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Calabrese, P.; Cardy, J.; Doyon, B., Entanglement Entropy in Extended Systems. Entanglement Entropy in Extended Systems, J. Phys. A, 42, Article 500301 pp. (2009) · Zbl 1180.81014
[2] Nozaki, M.; Numasawa, T.; Takayanagi, T., Phys. Rev. Lett., 112, Article 111602 pp. (2014)
[3] Holzhey, C.; Larsen, F.; Wilczek, F., Nucl. Phys. B, 424, 443 (1994)
[4] Calabrese, P.; Cardy, J., J. Stat. Mech., Article P06002 pp. (2004)
[5] Bianchini, D.; Castro-Alvaredo, O.; Doyon, B.; Levi, E.; Ravanini, F., J. Phys. A, Math. Theor., 48, Article 04FT01 pp. (2015)
[6] Alcaraz, F. C.; Berganza, M. I.; Sierra, G., Phys. Rev. Lett., 106, Article 201601 pp. (2011)
[7] Palmai, T., Phys. Rev. B, 90, Article 161404(R) pp. (2014)
[8] Caputa, P.; Veliz-Osorio, A., Phys. Rev. D, 92, Article 065010 pp. (2015)
[9] Chen, B.; Guo, W.; He, S.; Wu, J., J. High Energy Phys., 15, Article 173 pp. (2015)
[10] Brandao, F. G.S. L.; Horodecki, M., Nat. Phys., 9, 721 (2013)
[11] Cardy, J. L.; Castro-Alvaredo, O. A.; Doyon, B., J. Stat. Phys., 130, 129 (2008)
[12] Doyon, B., Phys. Rev. Lett., 102, Article 031602 pp. (2009)
[13] Yurov, V. P.; Zamolodchikov, A. B., Int. J. Mod. Phys. A, 6, 4557 (1991)
[14] Pozsgay, B.; Takacs, G., Nucl. Phys. B, 788, 167 (2008)
[15] Takacs, G.; Watts, G. M.T., J. High Energy Phys., 02, Article 082 pp. (2012)
[16] Di Francesco, P.; Mathieu, P.; Senechal, D., Conformal Field Theory (1997), Springer · Zbl 0869.53052
[17] Konik, R. M.; Palmai, T.; Takacs, G.; Tsvelik, A. M., Nucl. Phys. B, 899, 547 (2015)
[18] James, A. J.A.; Konik, R. M., Phys. Rev. B, 87, Article 241103(R) pp. (2013)
[19] Luscher, M., Commun. Math. Phys., 104, 177 (1986)
[20] Zamolodchikov, A. B., Int. J. Mod. Phys. A, 04, 4235 (1989)
[21] Castro-Alvaredo, O. A.; Doyon, B., J. Stat. Phys., 134, 105 (2009)
[22] Casini, H.; Fosco, C. D.; Huerta, M., J. Stat. Mech., Article P07007 pp. (2005)
[23] Gaberdiel, M., Phys. Lett. B, 325, 366 (1994)
[24] Kormos, M., Nucl. Phys. B, 744, 358 (2006)
[25] Fateev, V. A., Phys. Lett. B, 324, 45 (1994)
[26] Szecsenyi, I. M.; Takacs, G.; Watts, G. M.T., J. High Energy Phys., 1308, Article 094 pp. (2013)
[27] Latorre, J. I.; Rico, E.; Vidal, G., Quantum Inf. Comput., 4, 48-92 (2004) · Zbl 1175.82017
[28] Berganza, M. I.; Alcaraz, F. C.; Sierra, G., J. Stat. Mech., Article P01016 pp. (2012)
[29] Delfino, G., J. Phys. A, Math. Gen., 37, Article R45 pp. (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.